Kerala University of Digital Sciences, Innovation and Technology

M.Tech Computer Science & Engineering & M.Sc Computer Science

Scheme and Syllabus 2021 Admission

October 2021

School of Computer Science & Engineering (SoCSE)

School of Computer Science & Engineering

The School of Computer Science & Engineering (SoCSE) of the Kerala University of Digital Sciences, Innovation and Technology (KUDSIT) was established in the year 2020, in the Technocity Campus, Trivandrum. The school offers the academic programs M.Tech Computer Science & Engineering, M.Sc Computer Science and Ph.D.

Vision

To become a world-class centre of advanced learning, research and development, and societal outreach in the field of Computer Science and Engineering

Mission

To provide an enriching scholastic environment that nurtures innovative and effective ways of knowledge creation, dissemination and application to facilitate world-class education and cutting edge research in the field of Computer Science and Engineering and thereby contributing to the society nationally and globally.

Objectives

SoCSE targets to focus its activities in the following dimensions:

- World class research and academics with national and international collaborations.
- Nurturing globally competent and socially responsible talent pool through academic programmes.
- Commercialization of research outcomes through consultancy, collaborative new business initiatives and promotion of entrepreneurship.
- Creating an inclusive and collaborative environment to foster local, sustainable and globally relevant knowledge and expertise.

Master of Technology (M.Tech) in Computer Science & Engineering (intake: 90)

M.Tech in Computer Science & Engineering will be offered with 3 specializations: Artificial Intelligence; Connected Systems and Intelligence; Cyber Security Engineering. The students will have to choose one of the specializations in the second semester. The admission and eligibility requirements for all the 3 specializations are the same.

Three Specializations:

Artificial Intelligence

The annual growth rate of artificial intelligence (AI) is predicted to be 33.2% between 2020 and 2027. The market growth of AI is hampered due to lack in the number of experienced and trained professionals. This programme would transform and strengthen the industries across the globe. It focuses on intelligence exhibited by the machines and is a hybrid intelligence, where AI systems and humans work together. The curriculum offers an opportunity to approach AI from a technical perspective that focuses on the understanding, analysis and development of novel AI algorithms as well as social and human perspectives. Decision making, problem solving, perception, understanding human communication (in any language, and translate among them) for the computers would be the key elements taught in this programme. This programme provides the foundation and advanced skills in the principles and technologies that underlie AI including logic,

knowledge representation, probabilistic models, and machine learning. Students can pursue topics in depth, with courses available in areas such as robotics, vision, and natural language processing.

Connected Systems and Intelligence

The future era of digitally connected world envisages to be governed by smart connected devices that are aware of the context and the location, and envisions cognitive decision making through intelligent data analytics. The synergy derived out of the combination of artificial intelligence, big data analytics, the Internet of Things, and cloud and edge computing contributes significantly to realize the automated interaction of real-world physical systems. In 2025, according to the International Data Corporation, 41.6 billion connected IoT devices would generate 79.4 zettabytes of data. Future smartsystems will rely on data intelligence tools and approaches to identify hidden patterns, unknown correlations, and other relevant information from massive amounts of data.

Graduates from this masters programme is expected to develop novel solutions for intelligent and resilient networked systems and contribute to the design of stable digitally connected ecosystems involving distributed systems, computer vision, ubiquitous computing, machine learning, data science, and security services. They will be experts in the field, qualified for exciting careers in industry or doctoral studies.

Three key UN sustainable development goals addressed by this master programme are: industry, innovation and infrastructure (09); sustainable cities and communities (11); and responsible production and consumption (12). Both connected systems and data intelligence play a crucial role in enabling technologies to achieve some of the above-mentioned objectives such as the development of smart cities, safe and efficient transport systems and efficient resource consumption and production.

Cyber Security Engineering

Cyber security remains one of the most growth-oriented career fields in the computer science domain. The Cyber Security Engineering degree programme focuses on the fundamentals of developing, engineering, and operating secure information systems. Graduates of this programme will be able to solve complex cyber security issues affecting various businesses worldwide and propose new solutions. Graduates are likely to be employed in law enforcement, government or other related agencies as cyber security specialists, in commercial IT departments or security consultancies, or in other computing positions where cyber security is a major issue. Opportunities also exist for further academic study towards a Ph.D and a career in research.

M.Tech Programs Offered and Eligibility Requirements

Programme	Specialization	Duration	Minimum Eligibility for admission
Full-time Master of Technology	Artificial Intelligence	2 years (4 semesters)	B.Tech/BE in CS/IT/ECE or related
(M.Tech) in Computer Science	Cyber Security Engineering	2 years (4 semesters)	areas/MCA/M.Sc in CS/IT/Mathematics/
& Engineering	Connected Systems and Intelligence	2 years (4 semesters)	Statistics/Physics
Part-time Master of Technology (M.Tech) in Computer Science & Engineering	Artificial Intelligence	Minimum three years, Maximum three and half years	 B.Tech/BE in CS/IT/ECE or related areas/ MCA/ M.Sc in CS/IT/Mathematics/ Statistics/Physics Minimum of two years of full-time work experience in a company/industry/ educational or research institute/ any government department/ autonomous organization in the relevant field.

Master of Science (M.Sc) in Computer Science (intake: 90)

M.Sc in Computer Science will be offered with 2 specializations: Cyber Security; Artificial Intelligence. The students will have to choose one of the specializations while taking the admission. The admission and eligibility requirements for all the 2 specializations are the same.

Two Specializations:

Cyber Security

The area of cyber security also known as computer security or IT security is security applied to computers, computer networks, and the data stored and transmitted over them. The field is of growing importance due to the increasing reliance of computer systems. Governments, military, corporations, financial institutions, hospitals and other businesses collect, process and store a great deal of confidential information on computers and transmit that data across networks to other computers. The field of cyber security, has grown very rapidly in the recent years. The subject embraces technologies such as cryptography, machine learning, computer security, network security, ethical hacking forensics and fraud detection, as well as management of security and trade-offs while implementing information security.

With the growing volume and sophistication of cyber-attacks, ongoing attention is required to protect sensitive business and personal information, as well as safeguard national security. By offering the course M.Sc in Computer Science with specialization in Cyber Security we will be able to harness students who are open to challenging job options in corporate and allied sectors, academics, R&D, government and so on.

Machine Intelligence

Masters programme in Machine Intelligence enables the students to design, implement and analyze intelligent systems. Intelligent decision making and learning, and intelligent web-based systems are areas of growing emphasis in the digital world. Machine learning algorithms can figure out how to perform important tasks by generalizing from examples. This is often feasible and cost-effective when manual programming is not. Machine learning (also known as data mining, pattern recognition and predictive analytics) is used widely in business, industry, science and government, and there is a great shortage of experts in it. This course provides the necessary foundation in Machine Intelligence as well as other core subjects for a graduate level computer science education. Computers are learning to think, read, and write while picking up human sensory function, with the ability to see and hear (arguably to touch, taste, and smell, though those have been of a lesser focus). Machine intelligence technologies cut across a vast array of problem types (from classification and clustering to natural language processing and computer vision) and methods (from support vector machines to deep belief networks). All of these technologies are reflected on this landscape.

M.Sc Programs Offered an	nd Eligibility Requirements
--------------------------	-----------------------------

Programme	Specialization	Duration	Minimum Eligibility for admission
Full-time Master of	Cyber	2 years	
Science (M.Sc) in	Security	(4	
Computer Science		semesters)	B.Tech/B.E in any branch or BCA or B.Sc in
	Machine	2 years	CS/IT/Mathematics/Statistics/Physics
	Intelligence	(4	
		semesters)	

Course Categorization

- 100 Level Undergraduate level basic course
- 200 Level Undergraduate level advance course
- 300 Level- Postgraduate level instruction based course
- 400 Level Postgraduate level seminar/ research level course
- 500 Level Research level course

Credit Requirements for Completing M.Tech

Level of Course	Minimum Credit	Maximum Credit
100	0	6
200	0	15
300	30	70
400	9	50
500	0	9

Credit Requirements for Completing M.Sc

Level of Course	Minimum Credit	Maximum Credit
100	3	9
200	6	28
300	30	50
400	9	24
500	0	9

• The minimum semester-wise distribution of credits expected in a MSc program are:

Semester	Minimum Credits
Semester 1	20-30 credits
Semester 2	20-30 credits
Mini-Project#	6 credits
Semester 3	20-30 credits
Semester 4*	20-30 credits
Total (Minimum)	100 credits

*Project requires 16-24 credits

#The mini-project can be part of the semester or be offered between the semester as best suitable for the program of study. This can be decided by the schools.

• The minimum semester-wise distribution of credits expected in the M.Tech program are:

Semester	Minimum Credits
Semester 1	20-30 credits
Semester 2	20-30 credits
Mini-Project#	6 credits
Semester 3	20-30 credits
Semester 4*	24-30 credits
Total (Minimum)	100 credits

*Project requires 24 credits of project work, and 6 credits of seminar.

#The mini-project can be part of the semester or be offered between the semester as best suitable for the program of study. This can be decided by the schools.

Credit requirements for the masters program:

Students are required to comply with the following credit limits for successfully completing a master's program.

- Complete a minimum of 100 Credits, with an upper limit of 120 credits.
- The students are allowed to take a maximum of 30 Credits in a semester.
- The students are allowed to take a maximum of 12 Credits through audit courses. These credits do not count towards total credits for the program.
- The students are allowed to obtain a maximum of 12 Credits through challenge exams. These credits count towards total credits for the program.

Grade Point Calculation

Grade	Percentage of Marks	Grade Points	Remarks
S	95% and above	10	Outstanding
A+	90% to less than 95%	9	Excellent
А	80% to less than 90%	8	Very Good
B+	70% to less than 80%	7	Good
В	60% to less than 70%	6	Above Average
С	50% to less than 60%	5	Average
D	40% to less than 50%	4	Pass
E	30% to less than 40%	2	Low Pass
F	Below 30%	0	Fail

The University follows grade point system for each course with a scale of 10 defined as:

- AB will be represented for Absent and its GP is considered as 0
- "I" will represent incomplete
- The minimum grade point requires for passing a course is 4
- The cumulative grade point averages (CGPA) are calculated by weighing grade points by the corresponding credit numbers. The thesis grade counts toward the GP by using the same formula, that is, it is weighed by the credit number assigned to the thesis. The Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA) is calculated using the standard formula.

M.Tech in Computer Science and Engineering with Specialization in AI or Connected Systems & Intelligence or Cyber Security Engineering

	Semester 1			
Course Code	Course Title	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
	Digital Experience Laboratory	4	1-3-0-0	300
	Design Thinking and Innovation	3	3-0-0-0	300
M3010101	AI & Machine Learning	4	3-1-0-0	300
M3010102	Mathematical Foundations of Computer Science	4	3-0-1-0	300
M3010103	Advanced Data Structures and Algorithms	4	3-1-0-0	300
M3010104	Advanced Distributed Systems	4	3-1-0-0	300
	Elective 1	4		300
	Total Credits	27	•	

	1 st Semester Electives (Open for all specializations)				
Course Code	Course Title	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level	
M3010105	Soft Computing	4	3-0-0-1	300	
M3010115	Natural Language Processing	4	3-0-0-1	300	
M3010125	Cognitive Computing	4	3-0-0-1	300	
M3010135	Blockchain Technology	4	3-1-0-0	300	
M3010145	Security in Digital Transformation	4	3-0-0-1	300	

	Semester 2				
Course Code	Course Title	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level	
	Digital Access Community Empowerment	3	0-0-0-3	300	
M3010201	Data & Intelligence	4	3-1-0-0	300	
	Elective 2	4		300	
	Elective 3	4		300	
	Elective 4	4		300	
	Elective 5	4		300	
	Total Credits	23	•	1	

	2nd Semester Electives for Specialization in AI			
	(Four electives need to be selected)			
Course Code	Course Title	Credits	Credit Split Lecture/Lab/Semi nar/Project	Level
M3010202	Deep Learning & Reinforcement Learning	4	3-0-0-1	300
M3010212	Data Mining and Big Data	4	3-0-0-1	300
M3010222	Human Computer Interaction	4	3-0-0-1	300
M3010232	Computer Vision	4	3-0-0-1	300
M3010242	AI Ethics and Sustainability	4	3-0-1-0	300

M3010252	Connected Environments and Enabling Technologies	4	1-3-0-0	300
M3010262	Social Network Analytics and Security	4	3-0-0-1	300
M3010272	Speech Processing	4	3-0-0-1	300
M3010282	Augmented and Virtual Reality	4	3-1-0-0	300
M3010292	Stochastic Processes and Models	4	3-0-0-1	300
M3010203	Image & Video Processing	4	3-0-0-1	300

	2 nd Semester Electives for Specialization in Connecte	-	-	
	(Four electives need to be selected with minimum	n three from G	roup A)	
	Group A			
			Credit Split	
Course Code	Course Title	Credits	Lecture/Lab/Sem	Level
			inar/Project	
M3010213	Cloud and Edge Computing	4	3-0-0-1	300
M3010252	Connected Environments and Enabling Technologies	4	1-3-0-0	300
M3010223	IoT Networks and Endpoint Security	4	2-2-0-0	300
M3010233	Industrial IoT and Digital Twins	4	3-0-0-1	300
M3010243	Software Defined Networking	4	3-0-0-1	300
M3010253	Internet of Drones	4	3-0-0-1	300
M3010263	Cyber Big Data Analytics	4	3-0-0-1	300
M3010262	Social Network Analytics and Security	4	3-0-0-1	300
M3010273	Ubiquitous Computing	4	3-0-0-1	300
M3010283	Biometric Systems Engineering	4	3-1-0-0	300
M3010293	Hardware Security	4	3-1-0-0	300
M3010204	Wireless Networks and Mobile Computing	4	3-0-0-1	300
M3010214	Wireless Sensor Networks	4	3-0-0-1	300
M3010224	Cryptographic Engineering	4	3-1-0-0	300
	Group B			
M3010202	Deep Learning & Reinforcement Learning	4	3-0-0-1	300
M3010234	Quantum Computing & Cryptography	4	3-0-0-1	300
M3010244	Video Analytics	4	3-0-0-1	300
M3010222	Human Computer Interaction	4	3-0-0-1	300
M3010282	Augmented and Virtual Reality	4	3-1-0-0	300

	(Four electives need to be selected with min	imum three from Gi	roup A)	
	Group A			
Course Code	Course Title	Credits	Credit Split Lecture/Lab/	Level
			Seminar/Project	
M3010254	Network and System Security	4	3-1-0-0	300
M3010293	Hardware Security	4	3-1-0-0	300
M3010264	Ethical Hacking and Network Defense	4	3-1-0-0	300
M3010223	IoT Networks and Endpoint Security	4	2-2-0-0	300
M3010274	AI Based Cyber Attacks and Defenses	4	3-0-0-1	300
M3010263	Cyber Big Data Analytics	4	3-0-0-1	300
M3010284	Malware Analysis and Reverse Engineering	4	3-1-0-0	300
M3010283	Biometric Systems Engineering	4	3-1-0-0	300
M3010294	Advanced Topics in Cryptography	4	3-0-1-0	300
M3010262	Social Network Analytics and Security	4	3-0-0-1	300
M3010205	Cyber Crime Investigation	4	3-0-0-1	300
M3010224	Cryptographic Engineering	4	3-0-0-1	300
M3010215	Secure Software Engineering	4	3-0-0-1	300

M3010234	Quantum Computing & Cryptography	4	3-0-0-1	300	
	Group B				
M3010222	Human Computer Interaction	4	3-0-0-1	300	
M3010252	Connected Environments and Enabling Technologies	4	1-3-0-0	300	
M3010213	Cloud and Edge Computing	4	3-0-0-1	300	
M3010202	Deep Learning & Reinforcement Learning	4	3-0-0-1	300	
M3010282	Augmented and Virtual Reality	4	3-1-0-0	300	
M3010233	Industrial IoT and Digital Twins	4	3-0-0-1	300	
M3010244	Video Analytics	4	3-0-0-1	300	

	Semester 2 (Internship)					
Course Code	Course Title	Credits	Credit Split Lecture/Lab/Semi nar/Project	Level		
M3010225	M. TechSummer Internship/Team Project	6	0-0-0-6	300		
	Total Credits	6				

	Semester 3					
Course Code	Course Title	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level		
M4010301/ M4010302/ M4010303	Topics in Al/in Connected Systems & Intelligence/ Cyber Security	20	Research (20)	400		
	Total Credits	20				

	Semester 4			
Course Code	Course Title	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M4010401	M. Tech Thesis	30	0-0-6-24	400
	Total Credits	30		

Audit Courses (non - credit courses) - NPTEL Courses					
Computer Networks and Internet	Sensors and Actuators	Speaking Effectively			
Protocol	Sensors and Actuators	Speaking Enectively			
Cryptography and Network Security	Python for Data Science	Graph Theory			
Stochastic Modeling and the Theory of	Operating System	The Joy of Computing using Python			
Queues	Operating System				
Big Data Computing / Algorithms for Big	Data Mining	Innovation, Business Models and			
Data	Data Mining	Entrepreneurship			

	Semester 1					
Course Code	Title of the Course Credits		Credit Split Lecture/Lab/ Seminar/Project	Level		
	Digital Experience Laboratory	4	1-3-0-0	300		
	Design Thinking and Innovation	3	3-0-0-0	300		
M2020101	Mathematics for Computer Science	4	3-0-1-0	200		
M3022102	Cyber Security and Digital Forensics	3	3-0-0-0	300		
M2020103	Data Structures and Algorithms	4	3-1-0-0	200		
M2020104	Computer Architecture	3	3-0-0-0	200		
M1020105	Python for Data Science	3	3-0-0-0	100		
M3022106	Cyber Security and Forensics Lab	1	0-1-0-0	300		
M1020107	Python Programming Lab	1	0-1-0-0	100		
	Total Credits	26				

	Semester 2					
Course Code	Title of the Course	Title of the Course Credits Credits Seminar/Project	Level			
	Digital Access for Community Empowerment	3	0-0-0-3	300		
M3022201	Modern Cryptography	4	3-1-0-0	300		
M3022202	Cyber Analytics	3	3-0-0-0	300		
M2020203	Operating Systems	3	3-0-0-0	200		
M2022204	Computer Networks and Security	3	3-0-0-0	200		
	Elective 1	4		300		
M2022206	Security Auditing Lab	1	0-1-0-0	200		
M3022207	Cyber Analytics Lab	1	0-1-0-0	300		
M3020208	M.Sc.Mini Project 1	1	0-0-0-1	300		
	Total Credits	23				

Electives for Semester 2						
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level		
M3020205	Augmented and Virtual Reality	4	3-1-0-0	300		
M3020215	Biometrics	4	3-1-0-0	300		
M3020225	Information Retrieval	4	3-0-0-1	300		
M3020235	Malware Analysis and Reverse Engineering	4	3-1-0-0	300		
M3020245	Cloud and Edge Computing	4	3-0-0-1	300		
M3020255	Hardware Security	4	3-1-0-0	300		
	Total Credits	4				

	Semester 2 Internsh	ір		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M3020265	M.Sc.Summer Internship/Team Project	2	0-0-0-2	300

|--|

	Semester 3			
Course Code	Title of the Course Credit		Credit Split Lecture/Lab/ Seminar/Project	Level
M3022301	Database Security	4	3-0-0-1	300
M3022302	Ethical Hacking and Defensive Techniques	3	3-0-0-0	300
	Elective 2	4		300
	Elective 3	4		300
	Elective 4	4		300
M3022306	Ethical Hacking and Penetration Testing Lab	1	0-1-0-0	300
M3020307	loT Experience Lab	2	0-2-0-0	300
M3020308	M.Sc. Mini Project 2	3	0-0-0-3	300
	Total Credits	25		

	Electives for Sem	lester 3		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M3020303	Applied Cryptography	4	3-0-1-0	300
M3020313	Block Chain Technology	4	3-1-0-0	300
M3020323	Cognitive Computing	4	3-0-0-1	300
M3020333	Artificial Intelligence for Cyber Security	4	3-0-0-1	300
M3020343	Mobile Application Security	4	3-0-0-1	300
M3020353	Embedded Systems	4	3-0-0-1	300
M3020363	Secure Software Engineering	4	3-0-0-1	300
M3020373	Natural Language Processing	4	3-0-0-1	300
M3020383	Quantum Computing & Cryptography	4	3-0-1-0	300
M3020393	Object-Oriented Analysis and Design	4	3-0-0-1	300
M3020304	Security in Digital Transformation	4	3-0-0-1	300
M3020314	Soft Computing	4	3-0-0-1	300
M3020324	Web Technology	4	3-0-0-1	300

	Seme	ester 4		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Projec t	Level
M4020401	M.Sc.Internship/Project	24	0-0-0-24	400
	Total Credits	24		

	Semester	1		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
	Digital Experience Laboratory	4	1-3-0-0	300
	Design Thinking and Innovation	3	3-0-0-0	300
M2020101	Mathematics for Computer Science	4	3-0-1-0	200
M3021112	Machine Learning	3	3-0-0-0	300
M2020103	Data Structures and Algorithms	4	3-1-0-0	200
M2020104	Computer Architecture	3	3-0-0-0	200
M1020105	Python for Data Science	3	3-0-0-0	100
M3021116	Machine Learning Lab - 1	1	0-1-0-0	300
M1020107	Python Programming Lab	1	0-1-0-0	100
	Total Credits	26		

M.Sc. in Computer Science with Specialization in Machine Intelligence

	Semester 2			
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
	Digital Access for Community Empowerment	3	0-0-0-3	300
M3021211	Digital Image and Video Processing	4	3-0-0-1	300
M2021202	Database Systems	3	3-0-0-0	200
M2020203	Operating Systems	3	3-0-0-0	200
M3021204	Deep Learning and Reinforcement Learning	3	3-0-0-0	300
	Elective 1	4		300
M3021206	Machine Learning Lab - 2	2	0-1-0-0	300
M3020208	M.Sc. Mini Project 1	1	0-0-0-1	300
	Total Credits	23		

	Electives for Semest	ter 2		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M3020205	Augmented and Virtual Reality	4	3-1-0-0	300
M3020216	Computer Vision	4	3-0-0-1	300
M3020225	Information Retrieval	4	3-0-0-1	300
M2022204	Computer Networks and Security	4	3-0-1-0	200
M3020217	Data Analytics	4	3-0-0-1	300
M3020218	AI Ethics and Sustainability	4	3-0-1-0	300

	Semester 2 Inte	rnship		
Course Code	Title of the Course		Credit Split Lecture/Lab/ Seminar/Project	Level
M3020265	M.Sc.Summer Internship/Team Project	2	0-0-0-2	300
	Total Credits	2		
	Semester	3		
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M3021373	Natural Language Processing	4	3-0-0-1	300
M3021312	Big Data Technologies	3	3-0-0-0	300
	Elective 2	4		300
	Elective 3	4		300
	Elective 4	4		300
M3021316	Big Data Technologies Lab	1	0-1-0-0	300
M3020307	IoT Experience Lab	2	0-2-0-0	300
M3020308	M.Sc. Mini Project 2	3	0-0-0-3	300
	Total Credits	25		

	Electives for S	Semester 3			
Course Code	Title of the Course	Elective No.	Credits	Credit Split Lecture/Lab/ Seminar/Project	Level
M3020334	Artificial Intelligence	Elective 2	4	3-0-1-0	300
M3020314	Soft Computing	Elective 2	4	3-0-0-1	300
M3020363	Secure Software Engineering	Elective 2	4	3-0-0-1	300
M3020324	Web Technology	Elective 2	4	3-0-0-1	300
M3020245	Cloud and Edge Computing	Elective 3	4	3-0-0-1	300
M3020354	Optimization Techniques	Elective 3	4	3-0-0-1	300
M3020353	Embedded Systems	Elective 3	4	3-0-0-1	300
M3020304	Security in Digital Transformation	Elective 3	4	3-0-0-1	300
M3020323	Cognitive Computing	Elective 4	4	3-0-0-1	300
M3020383	Quantum Computing & Cryptography	Elective 4	4	3-0-1-0	300
M3020313	Block Chain Technology	Elective 4	4	3-1-0-0	300
M3020374	Object Oriented Analysis and Design	Elective 4	4	3-0-0-1	300

	Semester 4			
Course Code	Title of the Course	Credits	Credit Split Lecture/Lab/ Seminar/Projec	Level
			t	
M4020401	M.Sc. Internship/Project	24	0-0-0-24	400
	Total Credits	24		

List of Courses and Syllabus

University Core Courses

- 1. Design Thinking and Innovation
- 2. Digital Access Community Empowerment
- 3. Digital Experience Laboratory

Theory Courses

- 1. Advanced Data Structures and Algorithms
- 2. Advanced Distributed Systems
- 3. Advanced Topics in Cryptography
- 4. AI Ethics and Sustainability
- 5. AI & Machine Learning
- 6. AI Based Cyber Attacks and Defenses
- 7. Applied Cryptography
- 8. Artificial Intelligence
- 9. Artificial Intelligence for Cyber Security
- 10. Augmented and Virtual Reality
- 11. Big Data Technologies
- 12. Biometric Systems Engineering
- 13. Biometrics
- 14. Block Chain Technology
- 15. Cloud and Edge Computing
- 16. Cognitive Computing
- 17. Computer Architecture
- 18. Computer Networks and Security
- 19. Computer Vision
- 20. Connected Environments and Enabling Technologies
- 21. Cryptographic Engineering
- 22. Cyber Analytics
- 23. Cyber Big Data Analytics
- 24. Cyber Crime Investigation
- 25. Cyber Security and Digital Forensics
- 26. Data & Intelligence
- 27. Data Analytics
- 28. Data Mining and Big Data
- 29. Data Structures and Algorithms
- 30. Database Security
- 31. Database Systems
- 32. Deep Learning and Reinforcement Learning
- 33. Digital Image and Video Processing
- 34. Embedded Systems
- 35. Ethical Hacking and Defensive Techniques
- 36. Ethical Hacking and Network Defense
- 37. Hardware Security
- 38. Human Computer Interaction
- 39. Image & Video Processing
- 40. Industrial IoT and Digital Twins
- 41. Information Retrieval
- 42. Internet of Drones
- 43. IoT Networks and Endpoint Security
- 44. Machine Learning

- 45. Malware Analysis and Reverse Engineering
- 46. Mathematical Foundations of Computer Science
- 47. Mathematics for Computer Science
- 48. Mobile Application Security
- 49. Modern Cryptography
- 50. Natural Language Processing
- 51. Network and System Security
- 52. Object-Oriented Analysis and Design
- 53. Operating Systems
- 54. Optimization Techniques
- 55. Python for Data Science
- 56. Quantum Computing & Cryptography
- 57. Secure Software Engineering
- 58. Security in Digital Transformation
- 59. Social Network Analytics and Security
- 60. Soft Computing
- 61. Software Defined Networking
- 62. Speech Processing
- 63. Stochastic Processes and Models
- 64. Ubiquitous Computing
- 65. Video Analytics
- 66. Web Technology
- 67. Wireless Networks and Mobile Computing
- 68. Wireless Sensor Networks

Research Courses

- 1. Topics in Connected Systems & Intelligence
- 2. Topics in Al
- 3. Topics in Cyber Security

Laboratory Courses

- 1. Big Data Technologies Lab
- 2. Cyber Analytics Lab
- 3. Cyber Security and Forensics Lab
- 4. Ethical Hacking and Penetration Testing Lab
- 5. IoT Experience Lab
- 6. Machine Learning Lab 1
- 7. Machine Learning Lab 2
- 8. Python Programming Lab
- 9. Security Auditing Lab

Internships, Projects and Thesis

- 1. M.Sc Internship
- 2. M.Sc Project
- 3. M.Sc Mini Project 1
- 4. M.Sc Mini Project 2
- 5. M.Sc Summer Internship
- 6. M.Sc Summer Team Project
- 7. M.Tech Summer Team Project
- 8. M.Tech Thesis
- 9. M.Tech Summer Internship

Audit Courses (non-credit courses) - NPTEL Courses

- 1. Big Data Computing/Algorithms for Big Data
- 2. Computer Networks and Internet Protocol

- 3. Cryptography and Network Security
- 4. Data Mining
- 5. Graph Theory
- 6. Innovation, Business Models and Entrepreneurship
- 7. Operating System
- 8. Python for Data Science
- 9. Sensors and Actuators
- 10. Speaking Effectively
- 11. Stochastic Modeling and the Theory of Queues
- 12. The Joy of Computing using Python

Theory Courses

M3010103 ADVANCED DATA STRUCTURES AND ALGORITHMS

	Code		Course Nai	me	Lecture/La	b/Seminar/ Credits	-	Year of Introducti	
		Adva	nced Data Str	uctures and					
M3011	.03		Algorithm	IS		3-1-0-0		2021	
Prerequis	ites: Stu	Idents	should po	ossess the	fundamen	tal progra	amming	skills	in
Computer	· Prograi	mming L	anguages such	as Python.					
Course O	-								
Understa	nd fund	amental	data structur	es and algorith	nms, as well	as the trade	offs bet	ween vari	ious
implemen	tations	of these	abstractions.						
Course Ou	utcomes	5:							
By the co	nclusior	n of this d	course, studen	ts should be al	ole to:				
CC CC)1 : Unde	erstand a	advanced data	structures and	their applica	ations conce	ptually.		
CC CC)2 : Imple	ement va	arious algorith	nms for a vari	ety of appl	cations, and	d develo	op an insi	ight
on	NP-con	npletene	ss, randomiza	tion, approxim	ation, and pa	rameterized	comple	xity.	
CC)3 : Desig	gn, prove	e the correctne	ess and analyse	new algorit	nms.			
Program I	Learning	g Outcon	nes:						
PL	0 1 Dev	elop stro	ong fundamen [.]	tal disciplinary	knowledge.				
PL	O 2 Der	nonstrat	e research sk	ills that are o	f experimen	tal, computa	ational, d	or theoret	tical
na	ture.								
PL	02 4 00								
1	U 3 App	ly schola	arship to condu	uct independer	nt and innova	tive researcl	h.		
	• •	-	•	uct independer s in a variety of			h.		
PL	O 4 Sho	w comm	unication skill	•	formats (or	al, written).	h.		
PL PL	O 4 Sho O 5 Prac	w comm	unication skill ical standards	s in a variety of	formats (or conduct and	al, written). I research.		for schol	arly
PL PL PL	O 4 Sho O 5 Prac	w comm	unication skill ical standards	s in a variety of of professiona	formats (or conduct and	al, written). I research.		for schol	arly
PL PL PL יסנ	O 4 Sho O 5 Prac O 6 Acq urnals.	w comm ctice ethi uire pro	unication skill ical standards fessional skill	s in a variety of of professiona	formats (ora conduct and borative skil	al, written). I research.		for schol	arly
PL PL PL יסנ	O 4 Sho O 5 Prac O 6 Acq urnals.	w comm ctice ethi juire pro	unication skill ical standards fessional skill	s in a variety of of professional s such as colla ram learning c	formats (ora conduct and borative skil	al, written). I research.			arly
PL PL PL יסנ	O 4 Sho O 5 Prac O 6 Acq urnals. of cours	w comm ctice ethi juire pro	unication skill ical standards ifessional skill mes with prog	s in a variety of of professional s such as colla ram learning c	formats (or conduct and borative skil	al, written). I research. Is and write	articles		arly
PL PL jou Mapping	O 4 Sho O 5 Prac O 6 Acq urnals. of cours	w comm ctice ethi uire pro	unication skill ical standards ifessional skill mes with prog	s in a variety of of professional s such as colla ram learning c	formats (or conduct and borative skil	al, written). I research. Is and write	articles		arly
PL PL jou Mapping CO1	O 4 Sho O 5 Prac O 6 Acq urnals. of cours	w comm ctice ethi uire pro	unication skill ical standards ofessional skill mes with prog PLO2	s in a variety of of professional s such as colla ram learning c	formats (or conduct and borative skil outcomes: LO4	al, written). I research. Is and write	articles		arly
PL PL jou Mapping CO1 CO2 CO3	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1	w comm ctice ethi uire pro e outcou 3 3 3	unication skills ical standards ofessional skills mes with prog PLO2 2 2	s in a variety of of professional s such as colla ram learning c PLO3 P	formats (or conduct and borative skil putcomes: LO4 1 1	al, written). I research. Is and write PLO5	articles		arly
PL PL jou Mapping CO1 CO2 CO3 (Correlatio	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1	w comm ctice ethi uire pro e outcou 3 3 3	unication skills ical standards ofessional skills mes with prog PLO2 2 2	s in a variety of of professional s such as colla ram learning c	formats (or conduct and borative skil putcomes: LO4 1 1	al, written). I research. Is and write PLO5	articles		arly
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus:	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1	w comm ctice ethi uire pro e outcou 3 3 3 ight (Low	unication skills ical standards ofessional skills mes with prog PLO2 2 2	s in a variety of of professional s such as colla ram learning c PLO3 P	formats (or conduct and borative skil putcomes: LO4 1 1	al, written). I research. Is and write PLO5	articles		arly
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1	w comm ctice ethi uire pro e outcou 3 3 3 ight (Low	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate	s in a variety of of professional s such as colla ram learning c PLO3 P b (Medium) 3:	formats (or conduct and borative skil putcomes: LO4 1 Substantial (al, written). I research. Is and write PLO5 High))	PLO6		
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1 on: 1: Sli Content Various	w comm ctice ethi uire pro e outcou 3 3 3 ight (Low Algorith	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate	s in a variety of of professional s such as colla ram learning of PLO3 P BLO3 P (Medium) 3: rategies. Revisi	formats (or conduct and borative skil outcomes: LO4 1 1 Substantial (ng Asympto	al, written). I research. Is and write PLO5 High))	PLO6		
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1 on: 1: Sli Content Various Searchin	w comm ctice ethi uire pro e outco 3 3 3 ight (Low Algorith ag and Di	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate	s in a variety of of professional s such as colla ram learning of PLO3 P (Medium) 3: rategies. Revisi juer Algorithm	formats (or conduct and borative skil outcomes: LO4 1 Substantial (ng Asympto strategy.	al, written). I research. Is and write PLO5 High)) tic Complex	PLO6	lysis, Sort	ing,
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1 on: 1: Sli Content Various Searchin Balanced	w comm ctice ethi uire pro e outcou 3 3 3 3 ight (Low Algorith ug and Di d Binary	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate im Design Str vide and Cong Search Trees	s in a variety of of professional s such as colla ram learning of PLO3 P (Medium) 3: rategies. Revisi juer Algorithm (AVL trees).	formats (or conduct and borative skil outcomes: LO4 1 Substantial (ng Asympto strategy. Amortized C	al, written). I research. Is and write PLO5 High)) tic Complex omplexity a	PLO6	lysis, Sort	ing, asic
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1 Dn: 1: Sli Content Various Searchin Balanced Graph A	w comm ctice ethi uire pro e outcou 3 3 3 3 ight (Low Algorith ug and Di d Binary	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate im Design Str vide and Cong Search Trees	s in a variety of of professional s such as colla ram learning of PLO3 P (Medium) 3: rategies. Revisi juer Algorithm	formats (or conduct and borative skil outcomes: LO4 1 Substantial (ng Asympto strategy. Amortized C	al, written). I research. Is and write PLO5 High)) tic Complex omplexity a	PLO6	lysis, Sort	ing, asic
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1	O 4 Sho O 5 Prac O 6 Acq arnals. of cours PLO1 on: 1: Sli Content Various Searchin Balanceo Graph A flow.	w comm ctice ethi uire pro a outcou 3 3 3 ight (Low Algorith ag and Di d Binary lgorithm	unication skills ical standards ofessional skills mes with prog PLO2 2 v) 2: Moderate im Design Str ivide and Cong Search Trees is (BFS, DFS ar	s in a variety of of professional s such as colla ram learning c PLO3 P (Medium) 3: rategies. Revisi juer Algorithm (AVL trees). nd applications	formats (or conduct and borative skil outcomes: LO4 1 Substantial (ng Asympto strategy. Amortized C), Strongly C	al, written). d research. ls and write PLO5 High)) tic Complex omplexity an onnected Co	articles PLO6	lysis, Sort 7 Trees. Bats, Maxim	ing, asic
PL PL jou Mapping CO1 CO2 CO3 (Correlatio Syllabus: Module 1 2	O 4 Sho O 5 Prac O 6 Acq urnals. of cours PLO1 Dn: 1: Sli Content Various Searchin Balanced Graph A flow. Single-So	w comm ctice ethi uire pro e outcou 3 3 3 ight (Low Algorith ag and Di d Binary Igorithm	unication skills ical standards ofessional skills mes with prog PLO2 2 2 v) 2: Moderate in Design Str vide and Cond Search Trees is (BFS, DFS ar hortest Paths	s in a variety of of professional s such as colla ram learning of PLO3 P (Medium) 3: rategies. Revisi juer Algorithm (AVL trees).	formats (or conduct and borative skil putcomes: LO4 1 Substantial (ng Asympto strategy. Amortized C), Strongly C m Spanning	al, written). I research. Is and write PLO5 (High)) tic Complex omplexity an onnected Co Trees: imp	e articles	lysis, Sort Trees. Ba Its, Maxim	ing, asic num ugh

	examples.
4	Overview of P, NP Problems, NP-Completeness and a brief introduction to Randomization,
	Approximation and Parameterized Complexity.
Lab Exer	cises:
-	entation of linked list, stack, queue. Solving programs using recursion, Problems based on
_	ource Shortest Paths and Minimum Spanning Trees. Implementing sorting and searching
-	ns, Implementation of hashing. Other interesting problems (from online platforms)
	ata structures need to be used in an intelligent way.
Referen	
1	. Dexter C. Kozen, The Design and Analysis of Algorithms, ISBN 978-0-387-97687-
2	7, Springer. Douglas R. Stinson, Techniques for Designing and Analyzing Algorithms, ISBN
2	9780367228897, Chapman and Hall/CRC.
3	. Gilles Brassard and Paul Bratley, Algorithmic Theory and Practice, ISBN 0-13-023243-2,
	Prentice Hall.
4	. Jon Kleinberg and Eva Tardos, Algorithm Design, ISBN 0-321-29535-8, Pearson Education,
	2006.
5	. Jonathan L. Gross, Jay Yellen, Graph Theory and Its Applications, ISBN-13: 978-
	1584885054, Chapman and Hall/CRC.
6	. M. H. Alsuwaiyal, Algorithms Design Techniques and Analysis, ISBN: 978-981-02-3740-
	0, World Scientific Publishing Co. Beijing.
7	. Maarten van Steen, Graph Theory and Complex Networks: An Introduction, ISBN-13: 978-
	9081540612, Maarten van Steen.
8	 NarasimhaKarumanchi, Algorithm Design Techniques: Recursion, Backtracking, Greedy, Divide and Conquer, and Dynamic Programming, Kindle Edition
0	. OdedGoldreich, P, NP, and NP-Completeness: The Basics of Computational Complexity,
	ISBN-13: 978-0521192484, Cambridge University Press.
1	0. R.C.T. Lee, S.S. Tesng, R.C. Cbang and Y.T. Tsai, Design and Analysis of Algorithms, A
	strategic Approach, ISBN-13 : 978-1259025822, McGraw Hill Education
1	1. Rajeev Motwani, PrabhakarRaghavan, Randomized Algorithms, ISBN 0-521-47465-
	5, Cambridge University Press.
1	2. Rodney G. Downey, Michael R. Fellows, Fundamentals of Parameterized Complexity,
	ISBN-13:978-1447155584, Springer.
1	.3. S. K. Basu, Design Methods and Analysis of Algorithms,ISBN-13: 978-
	8120347465, Prentice Hall India.
1	4. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, ISBN
	978-0-262-03384-8, The MIT Press.
L 1	5. https://leetcode.com/

M3010104 ADVANCED DISTRIBUTED SYSTEMS

Course Code	Course Name	Lecture/Lab/Seminar/Project	Year of Introduction	
		Credits		
M301104	Advanced Distributed	3-1-0-0	2021	
	Systems	5-1-0-0	2021	
Prerequisites:	Priorknowledge of opera	ting systems, computer network	s, distributed systems,	

DBMS, Graph Theory.

Course Objectives:

- 1. To understand the basic principles of distributed systems along with different core problems and their solutions.
- 2. To introduce the basics of communication technologies used in distributed platforms viz. computer networks, other inter process communications.
- 3. To explore real-life examples of distributed systems and how core problems related to

distributed systems are solved in those example domains.

4. To give hands on experience of working with and implementing distributed systems.

Course Outcomes:

Upon successful completion of this course, students will be able to:

C01: Understand the basic problems related to distributed systems and different solution algorithms.

C02: Apply the knowledge of distributed systems while developing distributed software solutions.

C03: Implement and configure the various state-of-the-art distributed systems solutions.

C04: Complete a term project, including independent research, oral presentation, and programming on a latest advancement in Distributed Systems.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3			1		
CO2	3	3	3	1		
CO3	3	3	3	3	1	1
CO4	1	3	2	3	2	1

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module Content

1 Basics of Computer Networks:

Concept of layering: OSI and TCP/IP Protocol Stacks, Basics of packet, circuit and	ł
virtual circuit switching.Data link layer: framing, error detection, Medium Access Control,	,
Ethernet bridging.Routing protocols, Fragmentation and IP addressing, IPv4, CIDR	ł
notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation	ı
(NAT).Transport layer: flow control and congestion control, UDP, TCP, sockets, Application	۱
layer protocols: DNS, SMTP, HTTP, FTP, Email, Introduction to Wireless Network.	

- 2 Distributed Systems Fundamentals I: Introduction: Distributed computing Issues and Solutions, Examples of distributed systems. Architecture: Types of distributed Architecture Concepts: Process-Threads, Client-Server, Remote Procedure Call (RPC), Remote Method Invocation, Virtualization, Inter-Process Communication.
- 3 Distributed Systems Fundamentals II: Synchronization: Clock Synchronization, Mutual Exclusion, Leader Election.Consistency and Replication.Fault Tolerance. Security: secure channels, access control.

 Distributed Systems' Examples: *Cloud:* Introduction to Cloud Computing, Cloud Computing Platforms, Parallel Programming in the Cloud, Distributed Storage Systems, Virtualization(Multicore Operating Systems). *Distributed Database Management Systems*: Introduction, Architecture, Design, Query

Processing, Concurrency Control, Reliability Protocols. Distributed File Systems, Peer-to-Peer Computing (Bit Torrent), Distributed Network

ah Fy	(TOR), Distributed Version/Source Control System (Git) ercises:
	Module 1:
	Client-Server implementation (preferably using cloud-based virtual machines)
	Module 2:
	Message Queue implementation to communicate among multiple processes
	Module 3:
	Semaphore-based Mutual Exclusion Implementation
	Module 4:
	TOR implementation, Git Implementation, Distributed Data Processing with Apache
	Hadoop/Spark
Books	and other resources:
	A. S. Tanenbaum and M. V. Steen, "Distributed Systems, Principles and Paradigms," 2nd
	Edition, 2016,Createspace Independent Pub.
2.	S. Ghosh, "Distributed Systems, An Algorithmic Approach,"2nd Edition, 2020, Chapman and
	Hall/CRC.
3.	H.Attiya and J. Welch, "Distributed Computing: Fundamentals, Simulations, and Advanced
	Topics," 2nd Edition, 2006, Wiley.
4.	G. F. Coulouris, J.Dollimore, T. Kindberg, and G. Blair, "Distributed Systems. Concepts and
	Design,"5th Edition, 2011, Pearson.
5.	A. D. Kshemkalyani and M. Singhal, "Distributed Computing," 1st Edition, 2011, Cambridge
	University Press.
6.	W. Stevens, B.Fenner, A. M. Rudoff, "Unix Network Programming, Volume 1: The Sockets
	Networking API," 3rd Edition, 2015, Pearson Education India.
7.	W.Stevens, "UNIX Network
	Programming, Volume2: Interprocess Communications, "2nd Edition, 2015, Pearson Education
~	India.
	A. S. Tanenbaum, "Computer Networks,"5thEdition, 2013, Pearson Education India.
9.	B. A. Forouzan, "Data communication and Networking,"5th Edition, 2012, Mc GrawHill,
10	India.
10	J. F. Kurose, K. W. Ross, "Computer Networking: A top down approach," 6th
11	Edition, 2017, Pearson Education. Recent Publications from top-Tier Conferences and Journals.
11.	Recent rubications from top-fier conferences and journals.

Course Code	Course Name	Lecture/Lab/Seminar/Project	Year of
		Credits	Introduction
M301294	Advanced Topics	3-0-1-0	2021
	in Cryptography		
Prerequisites: Cry	ptography Engineering		
Course Objectives:			
1. Learn how to	do research in theoretical	and applied cryptography.	

M3010294 ADVANCED TOPICS IN CRYPTOGRAPHY

- 2. Learn to develop cryptographic algorithms and prove their security.
- 3. Applying cryptographic algorithms and protocols to solve practical problems.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Determine appropriate cryptographic primitives to solve real-world cyber security problems.

CO2: Evaluate security algorithms, protocols and related research works using rigorous approaches, including theoretical derivation, modeling, and simulations.

CO3: Formulate research problems in cryptography and cyber security.

CO4: Develop solutions to the formulated problems.

CO5: Clearly present ideas and research results.

Program Learning Outcomes:

PLO1 Develop strong fundamental disciplinary knowledge

PLO2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO3 Apply scholarship to conduct independent and innovative research

PLO4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO5 Practice ethical standards of professional conduct and research;

PLO6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

			0			
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3	3	2	2	3
CO2	3	3	3	2	2	3
CO3	3	3	3	2	2	3
CO4	2	3	3	2	2	3
CO5	2	2	1	3	1	3

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Secure multi-party computation, zero-knowledge proof, zero-knowledge arguments, oblivious algorithms, trusted-hardware-assisted cryptography, verifiable computation, efficient authentication and verifiable delegation of computation mechanism, homomorphic commitments, searchable encryption, privacy-preserving authentication, privacy-enhancing-technologies, Computing over encrypted data, Fully Homomorhpic Encryption (FHE), Functional Encryption (FE)), Differential privacy.
2	Post-quantum cryptography, Design of post-quantum cryptographic primitives, Code- based cryptography, Lattice-based cryptography, Multivariate cryptography, Isogeny- based cryptography, physical unclonable functions, true and deterministic random number generators, cryptanalysis of post-quantum cryptosystem, provable security in the ROM and QROM, software and hardware implementations, performance and security analysis NIST candidates, cryptographic processors, efficient software and hardware architectures, secure implementation and optimization in hardware or software.
3	Machine learning to analyze cryptosystems, machine learning based cryptanalysis, Machine learning based key exchange framework, machine learning based threat and attack model generation, nonlinear aspects of cryptosystems, Attacks on implementations and their countermeasures, such as side-channel attacks, fault attacks,

	L	
	har	dware tampering and reverse engineering techniques.
4	Ligh	nt weight cryptography, optimization for high-Performance and lightweight
	cry	ptography, security and privacy issues for resource-constrained devices, security
	eva	luation of real-world cryptographic systems, formal methods and verification tools
	for	secure embedded design that offer provable security, and metrics for measuring
	sec	urity, cryptography for cyber-physical systems composed of analog and digital
	con	nponents, automotive security and trusted computing.
Text Boo		
	1.	David Evans, Vladimir Kolesnikov and Mike Rosulek. A Pragmatic Introduction to
		Secure Multi-Party Computation, NOW Publishers, 2018
	2.	Ronald Cramer, Ivan Damgård and Jesper Buus Nielsen. Secure Multiparty
		Computation and Secret Sharing, Cambridge University Press, 2015
	3.	Introduction to Modern Cryptography by Katz and Lindell.
		Graduate Crypto Book by Dan Boneh and Victor Shoup.
Reference		
	1.	Yehuda Lindell. Secure Multiparty Computation (MPC), Communications of the
		ACM, January 2021
	2.	Manoj Prabhakaran and Amit Sahai (Eds.). Secure Multi-Party Computation, IOS
		Press, 2013
	3.	Zvika Brakerski, Fundamentals of fully homomorphic encryption, Providing Sound
		Foundations for Cryptography: On the Work
		of Shafi Goldwasser and Silvio MicaliOctober 2019 Pages
		543–563https://doi.org/10.1145/3335741.3335762
	4.	Mohammed M. Alani, Applications of machine learning in cryptography: a survey,
		ICCSP '19: Proceedings of the 3rd International Conference on Cryptography,
		Security and PrivacyJanuary 2019 Pages 23–27
	5.	William J Buchanan, Shancang Li, Shancang, Rameez Asif, Lightweight cryptography
		methods, March 2018, Journal of Cyber Security Technology.

M3010242	. M3020218 A	I ETHICS	AND S	USTAINABILITY
1013010242				

Course Code Course Name		Lecture/Lab/Seminar/Project Credits	Year of Introduction	
M301242,	AI Ethics and	3-0-1-0	2021	
M302218	Sustainability			
Prerequisites: N	Jil			

Course Objectives:

- 1. To equip the students with the ability to identify and analyse ethical issues related to the application of artificial intelligence.
- 2. To impart skills needed for the application of artificial intelligence in building sustainable systems.
- 3. To impart skills needed to address design issues related to socio ethic design capability with suitability as a major deign machine/deep learning techniques.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Pragmatic knowledge for understanding and analysing the application of artificial intelligence techniques in building sustainable systems

CO2: Problem identification and analysis skills on application domains requiring machine/deep learning techniques

CO3: Solution design capability with machine/deep learning techniques

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical

nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		2
CO2	2	3	3	2		2
CO3	2	3	3	2		2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module Content

1	AI and Humans, Super Intelligence and challenges, Data and data intelligence, Privacy and
	the Other Usual Suspects, Responsible Machines and Unexplainable Decisions. Policy
	aspects
2	Explainable AL - Black box models to XAL An XAL case study. AL Bias and Ethics - role of

- 2 Explainable AI Black box models to XAI, An XAI case study, AI Bias and Ethics role of explainable AI. Machine Learning and explainabily
- Sustainability-definition, UN sustainable development goals, role of data on building sustainable models. Automation and scalability - opportunities and challenges.
- 4 Al applications in sustainable development healthcare, natural resources monitoring and management, agriculture.

Lab/Assignment:

A term paper (prepared by a group of two) based on recent literature

Text Books:

- 1. AI Ethics, Mark Coeckelbergh, MIT Press, 2020
- 2. Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps, Denis Rothman, Packt Publishing Limited, 2020

References:

- 1. https://sdgs.un.org/
- 2. The role of artificial intelligence in achieving the Sustainable Development Goals , Ricardo Vinuesa etal., Nature Communications, 2020

Course Code	Course Name	Lecture/Lab/Seminar/Project	Year of		
		Credits	Introduction		
M301101	AI & Machine Learning	3-1-0-0	2021		
Prerequisites: Nil					
Course Objective	es:				
1. To impart algorithmic skills needed for designing AI and machine learning techniques and solutions.					

M3010101 AI & MACHINE LEARNING

2. To equip the students with the ability to identify and analyse problems solvable with

AI/machine learning algorithms/techniques.

3.	To impart solution of	design capability with	AI/machine learning techniques.
----	-----------------------	------------------------	---------------------------------

Course Outcomes: After completion of this course, the students would be able to:

CO1:Algorithm design/analysis capability in AI/Machine Learning

CO2: Problem identification and analysis skills on application domains requiring AI/machine learning techniques

CO3: Solution design capability with AI/machine learning techniques

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge.

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature.

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		2
CO2	2	3	3	2		2
CO3	2	3	3	2		2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Artificial Intelligence - Turing Test, Rule/Logic based AI and Machine Learning Based AI
	Importance of search in AI - uninformed and informed search, local search - gradient
	descent, modelling the brain - Perceptron, Back Propagation Algorithm, Narrow and
	General AI.
2	Machine Learning Paradigms: Supervised, Unsupervised and reinforcement
	Learning. Generalization performance, Bias-Variance tradeoffs, Feature Engineering
	relevance, feature extraction - PCA. Supervised Learning: - Classification - Bayesian
	Decision Tree and Random Forests, Ensemble Methods - Boosting and
	Bootstrap Aggregation, Regression - linear, logistic.
3	Unsupervised Learning: Density Estimation - Maximum Likelihood and Parzen Windows
	Clustering - Partition Based, Subspace Clustering, Incremental Clustering, Spectra
	Clustering. Sequence Modelling - Hidden Markov Models.
4	Statistical Learning theory - Empirical Risk Minimization, and Structura
	Risk Minimisation: VC Dimension. Kernel Machines - Support Vector Machines, Suppor
	Vector Clustering, Support Vector Regression, Scalable Kernel Machines, Deep Kerne
	Machines - Deep Kernels and Multi Kernel Learning
Lab Exerc	zises:
Module 1	L:
Experime	ents on Google AI Experiments platform, Implementation of Perceptron
Module 2	2:
Impleme	ntation of PCA, Nave Bayes Classifier, Logistic Regression
Module 3	3:
Impleme	ntation of ML Estimation, K-Means and HMM

Module 4:

Experiments with SVM Libraries - SVM and Deep SVM

Text Books:

- 1. Artificial Intelligence: A Modern Approach 4th Edition, Stuart Russell and Peter Norvig, Pearson, 2020
- 2. Understanding Machine Learning: From Theory to Algorithms, Shai ShalevShwartz, ShaiBen-David, Cambridge University Press, 2014

3. Deep Learning, Ian Good fellow, Yoshua Bengio, Aron Courville, The MIT Press, 2016

References:

1. Neural Networks and Learning Machines, Simon Haykin, Person, 2009.

2. Mastering Machine Learning Algorithms, Giuseppe Bonaccorso, Ingram short title, 2018

M3010274 AI BASED CYBER ATTACKS AND DEFENSES

Course Co	de	Course Name	L		eminar/Project	
					dits	Introduction
M301274	AI Base	ed Cyber Atta	cks and	3-0	-0-1	2021
		Defences				
Prerequisite	es: Nil					
Course Obje	ectives:					
		-		-	e concepts of	AI, ML and dee
	• • • •	ng to various o				
2. To h	elp the stude	nts develop th	e ability to	solve cyber se	curity problem	s using the learne
	epts.					
	-	nts to build aut		-	-	
		•			would be able t	
		I, ML and d	leep learnir	ng concepts fo	r solving vario	ous cyber securit
•	lems.					
	• •		•	•	gaps in cyber se	ecurity.
CO3	: Develop auto	onomous cybe	r defence s	ystems		
	· • •					
-	arning Outcor					
	•	ong fundamen	•			
		e research ski	ills that are	of experimer	ital, computatio	onal, or theoretica
natu						
		-			vative research	
			ls in a varie	ety of formats	(oral, written)	and to expert and
	expert audien					
		ical standards	•			
	• •					/ to write grants
	•	ills, and write	articles for	scholarly jour	nals if it is taug	ht by faculty in th
depa	rtment.					
N/Ionning of	course outco	mes with prog	gram learni	ng outcomes:		
Napping of						
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	PLO1 1	PLO2		PLO4 3	PLO5	1
CO1 CO2			3	PLO4 3 3		1 1
CO1 CO2 CO3	1	3	3 3	PLO4 3 3 3 3	3	1
CO1 CO2 CO3 (Correlation	1		3 3	PLO4 3 3 3 3	3	1 1
CO2 CO3	1	3	3 3	PLO4 3 3 3 3	3	1 1
CO1 CO2 CO3 (Correlation Syllabus:	1	3	3 3	PLO4 3 3 3 3	3	1 1

	detection, phishing page detection, malware detection, DoS and DDoS attack detection,
	anomaly detection, SQL injection attack detection, detection of APT, fraud detection,
	security risk analysis/estimation, vulnerability detection, prediction of cyber
	attacks, Intrusion Detection and Prevention Systems (IDS/IPS), Spam and Social
	Engineering Detection, Network Traffic Analysis, User/Machine Behavior Analytics
2	Adversarial attacks on machine learning based cyber security systems, Offensive AI and
	counter measures, Autonomous cyber attacks, secure and privacy preserving machine
	learning,
3	Explainable AI for Cyber Security, Enhancing the Trustworthiness of Systems: AI-based
	reasoning aligned with cyber security priorities, AI for reliable software systems and
	identity management, Autonomous and Semi autonomous Cyber Security,
4	Autonomous threat hunting, Threat Modelling, Vulnerability and Risk
	Management, Autonomous cyber defence, Self learning system, Predictive Analytics for
	Cyber Security, Applications of Game Theory, Human-Al interfaces, Cognitive security
Text	Books:
1	. Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches
	in Cybersecurity Analytics, Springer 2020.
2	. Clarence Chio, David Freeman, Machine Learning & Security, O Reilly, 2018
1	o <i>i</i> , <i>i</i> ,

- 3. Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein , Adversarial Machine Learning, Cambridge University Press, 2019.
- 4. Deep Learning Applications for Cyber Security, Alazab, Mamoun, Tang, MingJian (Eds.), Springer
- 5. Rakesh M. Verma, David J. Marchette, Cybersecurity Analytics, 2019 by Chapman and Hall/CRC
- 6. Sushil Jajodia et al, Adaptive Autonomous Secure Cyber Systems, Springer 2020
- 7. Wojciech Samek et al (ed.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer 2019
- 8. Leslie F. Sikos et al (ed.), AI in Cybersecurity, Springer, 2018

References:

- 1. Alexey Kleymeno , AmrThabetv , Mastering Malware Analysis: The complete malware analyst's guide to combating malicious software, APT, cybercrime, and IoTattacks ,2019.
- 2. Monappa KA, Learning Malware Analysis: Explore the concepts, tools, and techniques to analyze and investigate Windows malware, Packt Publication, 2018.
- 3. Xin et al, Machine Learning and Deep Learning Methods for Cybersecurity, IEEE Access 2018
- 4. Bowei Xi, Adversarial machine learning for cybersecurity and computer vision: Current developments and challenges, WIREs Computational Statistics, April 2020
- 5. Mohammad Al-Rubaie, Privacy Preserving Machine Learning: Threats and Solutions, IEEE Security and Privacy Magazine
- 6. Aiyanyo et al, A Systematic Review of Defensive and Offensive Cybersecurity with Machine Learning, Applied Sciences, MDPI, Aug 2020
- 7. Shaukat et al, A Survey on Machine Learning Techniques for Cyber Security in the Last Decade, IEEE Access, Dec 2020.

Course Code	Course Name	Lecture/Lab/Seminar/Project	Year of			
		Credits	Introduction			
M302303	Applied Cryptography	3-0-1-0	2021			
Prerequisites: Nil						
Course Objectives:						
• To introduce the fundamental and practical applications of cryptographic algorithms						
• To help the	students develop the ability to a	apply cryptographic solutions to cyl	ber			

M3020303 APPLIED CRYPTOGRAPHY

security problems.

To help the students to build secure cloud, IoT and other systems.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Summarize the cryptographic aspects of Internet protocols

CO2: Apply cryptography techniques for securing IoT applications

CO3: Apply Cryptography for security and privacy in cloud

CO4: Apply cryptographic techniques for many real life and practical applications

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3	2	2	2	1
CO2	3	3	1	1	1	2
CO3	3	3	1	1	1	2
CO4	3	3				

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module Content

1	Cryptographic aspects of Internet protocols, TLS/SSLsecurity at the transport layer, IPSec-					
	security at the network layer, IEEE802.11 Wireless LAN security, Mobile					
	phone Security, RFIDs and E-Passports, Electronic Payment Systems, Electronic					
	Voting Machines, Web Services Security					
2	Security Requirements in IoT Architecture - Security in Enabling Technologies -					
	Security Concerns in IoT Applications, Authentication/Authorization for Smart					
	Devices, Transport Encryption, security engineering for IoT development					
3	Cryptography for security and privacy in cloud, Privacy preserving authentication, anonym					
	ous credential systems, privacy preserving disclosure of data, privacy preserving access to					
	resources, accesscontrol through encryption,					
	computingon encrypted data, remote data checking, secure data deduplication, searchable					
	encryption					
4	Crypto-currencies, Bitcoin, P2P network, distributed consensus, incentives and proof-of-					
	work, mining, scripts and smart contracts, wallets: hot and cold storage,					
	anonymity, altcoins.					
Textboo	ks:					
1	. B L Menezes, R. Kumar, Cryptography, Network Security, and Cyber Laws, Cengage, 2019					
2	. William Stallings, Cryptography and Network Security Principles and Practice,					
	Sixth Edition, Pearson					
3	8. Sunil Cheruvu , Anil Kumar , Ned Smith , David M. Wheeler , Demystifying Internet					
	of Things Security: Successful IoT Device/Edge and Platform Security Deployment					
	, Apress; 1st ed. edition (August 14, 2019)					
Ζ	. Stefan Rass, Daniel Slamanig, Cryptography for Security and Privacy in					

Cloud Computing, Artech House (1 November 2013

5. B. Singhal, G. Dhameja, P S Panda, Beginning Block chain, Apress, 2018 6.

A.Narayananetal., "Bitcoin and Cryptocurrency Technologies: AComprehensive Introducti on," Princeton University Press, 2016.

References:

- 1. B. Rusell and D. "Practical Internet Things Van Duren, of Security," Packt Publishing, 2016.
- William Andrew 2. Johnson Jr, С. Richard, A. Sethares, and G. Klein, "Software receiver design: build your own digital communication system in five easy steps, Cambridge University Press, 2011.3
- "Mastering Bitcoin: Digital Cryptocurrencies," 3. A. Antonopoulos, Unlocking O'Reilly, 2014.
- 4. T. Alpcan and T. Basar, "Network Security: A Decision and Game-theoretic Approach," Cambridge University Press, 2011

		M30203	34 ARTIFI	CIAL INTELL	IGENCE		
Course Cod	le Cou	urse Name	Lecture	Credit Split /Lab/Seminar	/Project	Year of Intro	ductior
M302334	Artifici	al Intelligence		3-0-1-0		2021	
Prerequisites	s: Nil						
Course Objec	ctives:						
1. To pr	ovide studen	ts with a goo	d understar	nding of the c	oncepts of	information	theoret
meth	ods of artifici	al intelligence	described ir	n the syllabus.			
2. To he	lp the studen	its develop the	ability to s	olve problems	using the	learned conce	pts.
3. То со	nnect the co	ncepts to oth	er domain	both within a	nd without	t mathematic	s such a
patte	rn recognitio	n.					
Course Outco	omes: After c	ompletion of t	his course,	the students v	vould be al	ble to:	
		he foundation	s of moderr	n artificial inte	lligence the	eory, problem	
	tate of the ar						
CO2:	Analyze and e	evaluate critica	ally the build	ding and integ	ration of a	rtificial intellig	ence.
CO3:	Design and d	emonstrate a v	working arti	ficial intelliger	nce throug	h team resear	ch
proje	ct, and projed	ct report, prese	entation.				
-	rning Outcon						
	•	ong fundament	•	, .			
PLO 2	Demonstrat	e research skil	ls that are o	f experimenta	il, computa	itional, or the	oretical
natur							
		arship to condu	=				
		unication skills	s in a variet	y of formats (c	oral, writte	n) and to expe	rt and
	xpert audien						
		ical standards	•				
	• •	essional skills s				-	
		ills, and write a	articles for s	scholarly journ	als if it is ta	aught by facul	ty in the
•	tment.		· · ·				
		mes with prog					
			PLO3	PLO4	PLO5	PLO6	
CO1	3	2	3	2			
CO2	3	3	3	2			
CO3	2	3	3	3			
	1: Slight (Lov	v) 2: Moderat	e (Medium)	3: Substant	ial (High))	1	I
Syllabus:	0,1	,					

M202022/ ARTIFICIAL INTELLIGENCE

Module	Content
1	Introduction to AI, Turing test, Problem Definition -Production systems, Control strategies, Search strategies. Problem solving methods –Problem graphs, Matching, Indexing and Heuristic functions.
2	Search - Hill Climbing-Depth first and Breath first, Constraints satisfaction. Knowledge representation, Knowledge representation using Predicate logic, Resolution, Knowledge representation under uncertainty
3	Structured representation of knowledge - Basic plan generation systems – Strips – Expert systems – Architecture - Roles – Knowledge Acquisition – Meta knowledge, Heuristics - Knowledge representation – Production based system, Frame based system.
4	Inference – Backward chaining, Forward chaining, Fuzzy reasoning, Bayesian ReasoningLearning Machine learning, adaptive learning. Intelligent Agents - agents and environment - types of agents -collaborative agents.
	o ks: evin Night and Elaine Rich, Nair SB., Artificial Intelligence Third Edition, McGraw Hill, 017.

2. Stuart Russel and Peter Norvig, Artificial Intelligence - A Modern Approach 4th Edition, Person Education, 2020

References:

- 1. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.

M3020333 ARTIFICIAL INTELLIGENCE FOR CYBER SECURITY

Course Code	Course Name	Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction
M302333	Artificial Intelligence for Cyber Security	3-0-1-0	2021
Prerequisites:	Nil		

Course Objectives:

- 1. To provide students with a good understanding of the concepts of AI, ML and deep learning for applying to various cyber security problems.
- 2. To help the students develop the ability to solve cyber security problems using the learned concepts.
- 3. To help the students to build autonomous cyber defense systems.
- **Course Outcomes:** After completion of this course, the students would be able to:

CO1: Apply the AI, ML and deep learning concepts for solving various cyber security problems.

CO2: Employ AI,ML and DL concepts to identify research gaps in cyber security.

CO3: Develop autonomous cyber defence systems

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
0				3		1
	02		3	3		1
	203	3	3	3	3	3
	elation: 1: Slight (I		erate (Mediu		-	-
Syllab				,		
Modu	le Content					
1	Applications	of AI, machin	e learning a	nd deep lear	ning in cyber	security: spam email
		• • •				DDoS attack detection,
			=			APT, fraud detection,
						prediction of cyber PS), Spam and Social
						havior Analytics
2						ems, Offensive AI and
						y preserving machine
	learning,		•	·		
3	1 .	•	•	-		of Systems: AI-based
			-	-		oftware systems and
					omous Cyber S	
4	Autonomous		0,		elling, Vuln	,
			-			Predictive Analytics for , Cognitive security
Text E	Books:	y, ripplication	is of Guine 1	neory, nama		, cognitive security
		thira P. Vijaya	araghavan, Sa	abu Emmanue	el, Machine	Learning Approaches
	in Cybersecurity	Analytics, Sp	ringer 2020.			
	Clarence Chio, D			-		
3.	-	-	-	iin I. P. Rubins	stein , Adversa	rial Machine Learning,
1	Cambridge Unive	•		rity Alazah M	Mamoun Tan	g, MingJian (Eds.),
4.	Springer		or Cyber Sect	iiity, Alazab, I		
5.	Rakesh M. Verm	a, David J. M	archette, Cyl	ersecurity An	alytics, 2019 k	by Chapman and
	Hall/CRC	,		,		, .
	Sushil Jajodia et	•		•	•	-
7.	-		plainable AI:	Interpreting,	Explaining and	d Visualizing Deep
	Learning, Spring		o 1	c ·		
8. Refere	Leslie F. Sikos et	al (ed.),Al in	Cybersecurit	y, Springer, 20	018	
1.		ov Amr Thah	et Masterin	Malware An	alvsis [.] The cor	nnlete malware
					=	d IoTattacks ,2019.
2.		-			•	, and techniques to
	analyze and inve					
3.	Xin et al, Machir	ie Learning ai	nd Deep Lear	ning Methods	s for Cybersec	urity, IEEE
	Access 2018					
4.	Bowei Xi, Advers		-	•		
6	developments a Mohammad Al-F	-		•	•	and Solutions, n IEEE
0.	Security and Priv		-	Muchine Lea	ining. initals	
7.	-			ensive and Of	fensive Cvbers	ecurity with Machine
	Learning, Applie	-			- /	,
8.	Shaukat et al, A				s for Cyber Se	curity in the Last
	Decade, IEEE Ac	cess, Dec 202	0.			

M3010282, M3020205 AUGMENTED AND VIRTUAL REALITY

Course Co	de C	Course Name	Lec	Credit ۹ ture/Lab/Sem	-	Year of Introduction	
M301282 M30220		Augmented and Virtual Reality		3-1-0-0		2021	
Prerequisite	s: Nil	-	I				
Course Obje	ctives:						
1. To p	orovide stude	nts with an u	understand	ing of concep	ots and frame	works of imme	ersive
	nologies.						
					vare of AR/VR s	systems.	
	-	its develop imi					
		•			would be able		.: .
	onment in rea	-	nmersive	lechnologies	to manage l	large scale v	/irtua
		R/VR concepts	s to identify	the research	aans		
		'R systems for			0 1		
	arning Outcon	,	application		5.		
•	•	ong fundamen ⁻	tal discinlin	arv knowledge			
	•	-	•		tal, computati	onal or theor	retica
natu		e rescuren ski		or experimen			cticu
		arship to condu	uct indepen	dent and inno	vative researcl	h	
		•			(oral, written)		rt and
	expert audien			,	(, ,	•	
PLO	5 Practice eth	ical standards	of professio	nal conduct a	nd research;		
PLO	6 Acquire pr	ofessional ski	ills such as	collaborativ	skills ahility	v to write g	rants
					- Skins, abint	,	runtu
entre	epreneurial sk				nals if it is taug		
	epreneurial sk rtment.						
depa	rtment.		articles for	scholarly jour			
depa	rtment.	ills, and write mes with prog	articles for	scholarly jour	nals if it is taug		
depa	rtment. course outco	ills, and write mes with prog	articles for ram learnin	scholarly journ	nals if it is taug	ght by faculty	
depa Mapping of CO1	rtment. course outco PLO1	ills, and write mes with prog PLO2	articles for ram learnin PLO3	scholarly journ ng outcomes: PLO4	nals if it is taug	PLO6	
depa Aapping of CO1 CO2	rtment. course outco PLO1	ills, and write mes with prog PLO2 3	articles for ram learnin PLO3 3	scholarly journ ng outcomes: PLO4 3	PLO5	PLO6 1 1	
depa Aapping of CO1 CO2 CO3	rtment. course outcou PLO1 1	ills, and write mes with prog PLO2 3 3	articles for ram learnin PLO3 3 3	scholarly journ g outcomes: PLO4 3 3	PLO5	PLO6	
depa Mapping of CO1 CO2 CO3 (Correlation	rtment. course outco PLO1	ills, and write mes with prog PLO2 3 3	articles for ram learnin PLO3 3	scholarly journ ag outcomes: PLO4 3 3 3	PLO5	PLO6 1 1	
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus:	rtment. course outcou PLO1 1 1 1 1: Slight (Lov	ills, and write mes with prog PLO2 3 3	articles for ram learnin PLO3 3 3	scholarly journ g outcomes: PLO4 3 3	PLO5	PLO6 1 1	
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co	rtment. course outcou PLO1 1 1 1: Slight (Low ontent	ills, and write mes with prog PLO2 3 3 w) 2: Modera	articles for ram learnin PLO3 3 te (Medium	scholarly journ g outcomes: PLO4 3 3 3 3 3: Substan	PLO5	PLO6 1 1	
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co Fa	rtment. course outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv	articles for ram learnin PLO3 3 te (Medium ve Technolo	scholarly journ ng outcomes: PLO4 3 3) 3: Substan	PLO5 3 tial (High))	PLO6 1 1 3	in the
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co L Fa	rtment. course outcou PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit	articles for ram learnin PLO3 3 te (Medium ve Technolo tion: Huma	scholarly journ g outcomes: PLO4 3 3 3 3 3 3: Substan ogies n auditory sys	PLO5 3 tial (High))	PLO6 1 1 3 isual system, V	in the
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co Fa Hit pe	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 w) 2: Modera with Immersiv ion and cognit ual rendering;	articles for ram learnin PLO3 3 te (Medium ve Technolo tion: Huma Motion in	scholarly journ g outcomes: PLO4 3 3 3 3: Substan ogies n auditory system real and virtu	PLO5 PLO5 3 tial (High)) tem, Human v al worlds; 3D (PLO6 1 1 3 isual system, ' Computer gra	Visua phics
depa Aapping of CO1 CO2 CO3 (Correlation Syllabus: Aodule Co Fa Hu pe vi	rtment. course outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognitual rendering; ace, virtual ob	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Huma Motion in oserver posi	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 5 5 5 5 6 6 7 8 9 9 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod	PLO6 1 3 isual system, V Computer gra delling, illumir	Visua phics
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co L Fa Hi pe vi ar	rtment. course outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 w) 2: Modera with Immersiv ion and cognitual ual rendering; ace, virtual ob models, shadi	articles for ram learnin PLO3 3 te (Medium ve Technolo tion: Human Motion in pserver posi ing algorith	scholarly journ g outcomes: PLO4 3 3 3 3 3: Substan ogies n auditory syst real and virtu tioning, 3D cli ims; Tracking:	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientatio	PLO6 1 3 isual system, V Computer gra delling, illumir on, 3D orient	Visua phics nation
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co Fa Fa Pe vi ar ch	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognitual ual rendering; ace, virtual ob models, shadi types of track	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Huma Motion in pserver posi ing algorith cers, SLAM;	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation mersive enviro	PLO6 1 1 3 isual system, V Computer gra delling, illumir on, 3D orient	Visua phics nation ution
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co Fa Hu pe vi ar ch sc	rtment. course outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 w) 2: Modera with Immersiv ion and cognitual ual rendering; ace, virtual ob models, shadi types of track basics, natura	articles for ram learnin PLO3 3 te (Medium ve Technolo tion: Huma Motion in pserver posi ing algorith cers, SLAM; al vs. real	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation mersive environ m's Reality-vir	PLO6 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolution	Visua phics nation ution
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co L Fa Hi pe vi ar ch sc Et	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc	articles for ram learnin PLO3 3 te (Medium ve Technolo tion: Huma Motion in pserver posi ing algorith cers, SLAM; al vs. real	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation mersive enviro	PLO6 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolution	Visua phics nation ution
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co L Fa Hi pe vi ar ch sc Et	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 w) 2: Modera with Immersiv ion and cognitual ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in pserver posi ing algorith ters, SLAM; al vs. real tial consequ	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation mersive environ m's Reality-viron and safety issue	PLO6 1 3 isual system, ¹ Computer gra delling, illumir on, 3D orient onments: evolution tuality Continues.	Visua phics nation ution uum;
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co Syllabus: Module Co Fa Hi pe vi ar ch Sc Et	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality olution of AR;	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in oserver posi ing algorith cers, SLAM; al vs. real cial conseque Component	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D moo 2D orientatio mersive enviro m's Reality-vir and safety issu	PLO6 1 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolution tuality Contin ues.	Visua phics nation uum; isplay
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co I Fa Vidule Co I Sulabus: CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality plution of AR; of are componer	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in pserver posi- ting algorith cers, SLAM; al vs. real- cial conseque Component ots in AR:	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 atial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation m's Reality-vir and safety issu	PLO6 1 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolution tuality Continues. , processor, d sensor integr	Visua phics nation uum; isplay ation
depa Vapping of CO1 CO2 CO3 (Correlation Syllabus: Vlodule Co L Fa O L C C C C C C C C C C C C C C C C C C	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognitual ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality olution of AR; of are componentioned ine, rendering	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in oserver posi ing algorith cers, SLAM; al vs. real cial conseque Component ots in AR: software; T	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation m's Reality-vir and safety issu ng AR: sensors acquisition, periences: Mai	PLO6 1 3 isual system, ¹ Computer gra delling, illumir on, 3D orient onments: evol tuality Contin ues. , processor, d sensor integr rker based, ma	Visua phics nation ution uum; isplay ation arker
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co I Fa Pe Vi ar ch sc Et 2 Ar Hi de ap	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality plution of AR; of are componer ine, rendering on based; A	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Huma Motion in pserver posi ing algorith cers, SLAM; al vs. real cial consequ Component nts in AR: a software; Ta ugmented	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 PLO5 atial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation m's Reality-vir and safety issues and safety issues acquisition, periences: Man- sup Languages	PLO6 1 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolution tuality Continues. , processor, d sensor integra rker based, ma (ARML): T	Visua phics nation uum; isplay ation arker Types
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co I Fa Hi pe vi ar ch sc Et 2 Au Hi de ap le Au	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality olution of AR; are componer ine, rendering on based; A ality content:	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in pserver posi ing algorith cers, SLAM; al vs. real cial conseque Component ts in AR: software; Ta Augmented Content cr	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 3 tial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation m's Reality-vir and safety issu mg AR: sensors acquisition, periences: Mai sup Languages User interface	PLO6 1 3 isual system, ¹ Computer gra delling, illumir on, 3D orient onments: evolution tuality Continues. , processor, d sensor integri rker based, ma (ARML): T e; Computer	Visua phics nation ution, ution, ation, arker- Types, visior
depa Mapping of CO1 CO2 CO3 (Correlation Syllabus: Module Co L Fa	rtment. course outcourse outcourse outcourse PLO1 1 1 1 1 1 1 1 1 1 1 1 1 1	ills, and write mes with prog PLO2 3 3 w) 2: Modera with Immersiv ion and cognit ual rendering; ace, virtual ob models, shadi types of track basics, natura concerns, soc ality olution of AR; of are componer ine, rendering on based; A ality content: AR: Marker t	articles for ram learnin PLO3 3 3 te (Medium ve Technolo tion: Human Motion in oserver posi- ing algorith cers, SLAM; al vs. real- cial conseque Component tracking, in	scholarly journ g outcomes: PLO4 3 3 3 3 3 3 3 3 3 3 3 3 3	PLO5 PLO5 PLO5 atial (High)) tem, Human vi al worlds; 3D (oping, 3D mod 2D orientation m's Reality-vir and safety issues and safety issues acquisition, periences: Man- sup Languages	PLO6 1 1 3 isual system, V Computer gra delling, illumir on, 3D orient onments: evolu- tuality Contin ues. , processor, d sensor integra rker based, ma (ARML): T e; Computer for acking, increm	Visua phics nation uum; isplay ation, arker- Types, visior nenta

	tangible; Tangible AR; Collaborative AR; Mobile AR: technologies, promises and
	constraints; Existing challenges; Styles of augmented reality applications: magic books,
	magic mirrors, magic windows and doors, magic lens, navigation assistance, non-
	referential augmentation, objective view augmented reality ; Familiarisation with
	Microsoft HoloLens, ARCore.
3	Virtual Reality
	Key elements of VR experience; History and evolution of VR; Virtual reality systems:
	tracking, Aural display, haptic display, vestibular display, visual displays- stationary, head
	based, hand-held; Rendering the virtual world- Aural
	representation, haptic representation, rendering systems- visual,
	aural, haptic; Interaction with virtual world: Manipulation, Navigation, Communication;
	Virtual reality experience: immersion, types of virtual world; Designing VR experience;
	Development tools and framework: software development tool frameworks,
	X3DStandard; VR software integration, game engines; Existing challenges;
	Familiarisation with OculusRift and Unity 3D.
4	Related Technologies, Applications and Potential Research Areas
	Related Technologies: Mixed Reality, XR, Comparison of immersive technologies; Areas
	and industries for immersive technologies: entertainment, education, training, medical,
	industrial, military; Case-studies: Design and evaluation, Production pipeline: sensing,
	rendering, mobile, stand alone and high-end computing platforms; Potential research
	directions: design, prototyping, innovative applications, cloud services, IoT, cyber
	physical systems.
Text	Books:
	Alan B. Craig, Morgan Kaufmann, "Understanding Augmented Reality, Concepts and
	Applications", 2013.
2.	
2.	Application, and Design", 2002.
3.	Steven M. LaValle. Virtual Reality. Cambridge University Press, 2017.
4.	Chung Van Le, Dac-Nhuong Le, Jolanda G. Tromp, "Emerging Extended Reality Technologies
4.	for Industry 4.0 Early Experiences with Conception, Design, Implementation, Evaluation
	and Deployment", 2020.
5.	Steve Aukstakalnis, "Practical Augmented Reality A Guide to the Technologies,
	Applications, and Human Factors for AR and VR", Pearson Education, 2016.
Refere	
1.	Alan B Craig, William R Sherman and Jeffrey D Will, "Developing Virtual Reality
	Applications: Foundations of Effective Design", Morgan Kaufmann, 2009.
2.	6, I, I
	Empowering Human, Place and Business. Cham: Springer International Publishing 2018.
3.	D. Schmalstieg and T. Höllerer. Augmented Reality: Principles and Practice. Addison-
	Wesley, Boston, 2016.
4.	Samuel Greengard, "Virtual Reality", MIT Press, 2019.
5.	Dennis Vroegop, "Microsoft HoloLens Developer's Guide", Packt Publishing, 2017.
6.	Micheal Lanham, "Learn ARCore — Fundamentals of Google ARCore: Learn to build
	augmented reality apps for Android, Unity, and the web with
	Google ARCore 1.0", Packet Publishing, 2018.
7.	
/.	Reality Headsets", 2021.
_	· ·
8.	Philippe Fuchs, "Virtual Reality Headsets - A Theoretical and Pragmatic Approach", CRC
1	Press, 2017.

Course Code	Course Name	Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction

M3021312 BIG DATA TECHNOLOGIES

M3023	W302312 Big Data Technologies				2	021	
Prereq	uisites: Ni	1					
Course	Objective	s:					
• Toi	introduce [·]	various technolo	gies related t	o big data ana	alysis		
 To enable the students to design big data analysis systems using machine learning 							
Course	Outcome	s: After completi	on of this cou	urse, the stude	ents would be a	able to:	
		erstand the conc					
		yze and process		g Apache Spar	k		
		orm mining in da					
_		gn bigdata analys	sis system us	ing machine le	earning with sp	ark	
Progra		g Outcomes:					
		elop strong fund			-		
		monstrate resear	ch skills that	t are of exper	imental, comp	utational, or	theoretica
	nature	ly ccholarchin to	conduct ind	anondont and	innovativo roc	oarch	
		oly scholarship to		=			ovport and
		rt audiences;		variety of tor	illats (Olal, wil		expert and
	•	ctice ethical stan	dards of prof	fessional cond	uct and resear	ch·	
		quire profession	•				ite grants
		eurial skills, and					-
	departme			- · · · · · · · · · · · · · · · · · · ·	je en nene ne ne ne		
	•	se outcomes witl	n program le	arning outcor	nes:		
	PLO1	PLO2	· · ·	PLO4		PLO6	
CO1	3	3	2	1	2	1	
CO2	3	2	1	1	1	1	
CO3	3	3	1	1	1	2	
CO4	3	3	2	1	2	1	
(Corre	lation: 1: S	light (Low) 2: Mo	oderate (Me	dium) 3: Sub	stantial (High))		
Syllabu	ıs:						
Modul	e Conter	it					
1	Introdu	iction to	Big	Data	Technolog	y, Hadoop,	HDF
	and Ma	apReduce, Hadoc	p Environme	ent, Messagiı	ng systems, [Distributed S	QL Query
	Engine	S					
2		iction to Apache		•		evel architec	ture, Sparl
		t, RDD, Lazy Ope	-	• ·	•		
3	-	data stream, Exa	•	• •	•	-	
		g streams, Count	_				;
4		ne learning with s	. , .		ning libraries, S	park ML and	
Applications, Graph Processing with Spark							
Text B							
1.		ytics with Spark	Using Pytho	n, By Jeffrey	Aven, Addison	Weley Data 8	& Analytic
	series, 20				004-		
2.	-	nalytics with Spa	irk, Mohamn	ned Guller, AP	ress, 2015		
Refere			D 11"				
1.	-	jaraman, Jeffrey	D Ullman. I	Mining of Ma	assive Datasets	s, Cambridge	Universit
	Press 201	U					

M3010283 BIOMETRIC SYSTEMS ENGINEERING

Course Code	Course Name	Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction

M3	01283	Bio	metric System	s	3-1-0-	0	2021	
			Engineering	-		-		
Prereq	uisites		0 0					
Course								
	-		al knowledge o	of various b	iometric syste	ms		
	•		to develop pr		•			
			to do researc		-			
			ompletion of t			vould be able t	to	
			undamentals c					es and
		•	ne existing bior		•	•		
		-	ototype device					
			ognition syster	•			using any bio	metrio
	moda	-						
		rning Outcom	ies:					
-		-	ng fundament	al disciplina	arv knowledge			
		•	e research skil	•			onal or theo	retica
	natur				or experiment			i e tieu
			rship to condu	ct indenen	dent and inno	vative researd	h	
		,	unication skill	•				rt and
		xpert audien			cy of formato	(or all million)		
		•	cal standards o	of professio	nal conduct a	nd research:		
			ofessional skil	•			v to write a	rants
			ills, and write a					-
		tment.			serielarly jear			
			nes with prog	am learnin	g outcomes:			
						PLO5	PLO6	7
	.01	1	2	2	2	2	1	-
	.01	Ŧ	2	2	2	2		4
C	:02	2	1	1	1	1	2	
	:03	2	1	1	1	1	2	
(Corre	lation	1: Slight (Lov	v) 2: Moderat	e (Medium) 3: Substant	ial (High))		
Syllabu	ls:							
Module	e Co	ntent						
1	Int	roduction to	Biometric Syste	ems				
	Ph	ysiological ar	nd behavioral	biometrics	s: fingerprint,	face, iris, ke	eystroke dyn	amics
	Sig	nature, Gait	; Biometric s	system cor	mponents; St	ages of ope	ration: enro	Iment
	ve	rification, ide	entification, i	dentificatio	n vs verificatio	on; Multibiome	etrics; Inforr	natior
	fus	ion; Emergir	ng biometric	modalities	: electrophysi	ological biom	netrics, DNA	, gait
	vas	scular biome	trics, ear sha _l	be, soft bi	ometrics, mo	lecular biome	trics, multisp	pectra
	bic	metrics; Ove	rview of desigr	n stages and	d constraints.			
2	Fai	miliarization v	with sensors					
	Ту	pes of acq	uisition: conta	act and c	ontactless ac	quisition of	various bio	metrio
	ma	dalities- adva	antages, disadv	vantages;				
	Sei	nsors - comp	onents, workii	ng and app	lications: mot	ion sensor, te	emperature s	ensor
	de	pth sensor, ul	trasonic senso	r, swipe sei	nsor, heart rat	e sensor,		
	In	aging sensor	- cameras- wo	orking, app	lications: nea	r-infrared, nig	ght vision, th	ermal
	vis	ible light;						
	3D	imaging teo	hniques- defin	nition, wor	king, existing	techniques a	and application	ons ir
	bic	ometric: co	mputed tor	nography,	3D laser	imaging,	structured	ligh
	im	aging, interfe	rometry					
	Fai	miliarization	with device p	rototyping	- fingerprint	scan, face sca	an, iris scan,	hand
			ılar imaging: h					
					, ,			
3	Bic	metric Algori	thms		, 0			

	Due and accessing Nation and Design of interact actualties. Eak an access
	Pre-processing: Noise removal, Region of interest extraction, Enhancement
	Feature extraction: Texture based: LBP and its variants, HoG, Gabor filter, Log Gabor,
	GLCM, Statistical-based: ICA, LDA, PCA and its variants, Moments, Transform based:
	DWT, DFT, Hough transform, shearlet, contourlet, MFCC features;
	Keypoint descriptors: SIFT, SURF, RANSAC, FAST, ML-based: vocabulary learning
	methods: clustering (K-Means, GMM), Extreme learning machines, deep learning;
	Matching: Distance-based: Euclidean, Hamming; Classifier based: KNN, SVM, Deep learning
	Implementation of any of the biometric-based recognition using these techniques
4	Evaluation, testing, standards, security and privacy issues
	Biometric system errors: Type I, Type II errors, EER, ROC, DET; Testing - enrolment,
	verification and identification processes;
	Biometric standards: overview, standards organizations, approved biometric standards;
	Privacy issues, Attacks on the biometric system: types of attacks- reconstruction
	attacks, PA GAN-based attacks;
	Countermeasures- Sensor level, Software-based techniques, liveness detection, PAD;
	Template security: biometric cryptosystems: key generation, key binding, feature
	transformation: non-invertible transform, salting; Biometric encryption, Biometric
	Applications.
Text B	ooks:
1.	Anil K Jain, Patrick Flynn, Arun A Ross, Handbook of Biometrics, Springer, 2008
2.	Ted Dunstone and Neil Yager, Biometric System and Data Analysis: Design, Evaluation, and
	data Mining, Springer
3.	R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior, Guide to Biometrics,
	Springer
4.	Reid, P., Biometrics for Network Security, Dorling Kingsley (2007)
5.	Woodward, J.D. and Orlans, Nicholos M., Biometrics, McGraw Hill (2002)
Refere	ences:
1.	Jiang, Richard, et al. Deep Biometrics. Springer-Verlag, 2019.
2.	Jain, A.K., Nandakumar, K. and Nagar, A., 2008. Biometric template security.
	EURASIP Journal on advances in signal processing, 2008, pp.1-17.
3.	Alonso-Fernandez, F., Fierrez, J. and Ortega-Garcia, J., 2011. Quality measures in biometric
	systems. IEEE Security & Privacy, 10(6), pp.52-62.
4.	Campisi P. Security and privacy in biometrics. London: Springer; 2013 Jun 28.
5.	Ratha, N.K. and Govindaraju, V. Advances in biometrics: sensors, algorithms and systems.
	Springer Science & Business Media, 2007

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction					
M302215	Biometrics	3-1-0-0	2021					
Prerequisites: N	il							
Course Objective	25:							
 To provide full 	undamental knowledge of va	arious biometric systems						
 To enable the 	e students to develop proto	types of biometric systems						
 To enable the 	e students to explore new b	piometric modalities						
Course Outcome	s: After completion of this c	course, the students would be able	to:					
CO1: Ana	CO1: Analyze the fundamentals of biometric systems and it's components, advantages and							
disadvantages of the existing biometric modalities and emerging biometric traits.								
	elop a prototype device to a							

M3020215 BIOMETRICS

CO3: Design a recognition system based on the biometric algorithms using any biometric

modality

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

<u> </u>				0		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	1	2	2	2	2	1
CO2	2	1	1	1	1	2
CO3	2	1	1	1	1	2
1	4 01: 1 . //					

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Introduction to Biometric Systems
	Physiological and behavioral biometrics: fingerprint, face, iris, keystroke dynamics
	Signature, Gait; Biometric system components; Stages of operation: enrolment,
	verification, identification, identification vs verification; Multibiometrics; Information
	fusion; Emerging biometric modalities: electrophysiological biometrics, DNA, gait,
	vascular biometrics, ear shape, soft biometrics, molecular biometrics, multispectral
	biometrics; Overview of design stages and constraints.
2	Familiarization with sensors
	Types of acquisition: contact and contactless acquisition of various biometric
	modalities- advantages, disadvantages;
	Sensors - components, working and applications: motion sensor, temperature sensor,
	depth sensor, ultrasonic sensor, swipe sensor, heart rate sensor, Imaging sensor-
	cameras- working, applications: near-infrared, night vision, thermal, visible light;
	3D imaging techniques- definition, working, existing techniques and applications in
	biometric: computed tomography, 3D laser imaging, structured light
	imaging, interferometry
3	Biometric Algorithms
	Pre-processing: Noise removal, Region of interest extraction, Enhancement
	Feature extraction: Texture based: LBP and its variants, HoG, Gabor filter, Log Gabor,
	GLCM, Statistical-based: ICA, LDA, PCA and its variants, Moments, Transform based:
	DWT, DFT, Hough transform, shearlet, contourlet, MFCC features;
	Keypoint descriptors: SIFT, SURF, RANSAC, FAST, ML-based: vocabulary learning
	methods: clustering (K-Means, GMM), Extreme learning machines, deep learning;
	Matching: Distance-based: Euclidean, Hamming; Classifier based: KNN, SVM, Deep
	learning
4	Evaluation, testing, standards, security and privacy issues
	Biometric system errors: Type I, Type II errors, EER, ROC, DET; Testing - enrolment,
	verification and identification processes;
	Biometric standards: overview, standards organizations, approved biometric standards;
	Privacy issues, Attacks on the biometric system: types of attacks- reconstruction
1	

	attacks, PA GAN-based attacks;
	Countermeasures- Sensor level, Software-based techniques, liveness detection, PAD;
	Template security: biometric cryptosystems: key generation, key binding, feature
	transformation: non-invertible transform, salting; Biometric encryption, Biometric
	Applications.
Text B	poks:
1.	Anil K Jain, Patrick Flynn, Arun A Ross, Handbook of Biometrics, Springer, 2008
2.	Ted Dunstone and Neil Yager, Biometric System and Data Analysis: Design, Evaluation, and
	data Mining, Springer
3.	R. M. Bolle, J. H. Connell, S. Pankanti, N. K. Ratha, and A. W. Senior, Guide to Biometrics,
	Springer
4.	Reid, P., Biometrics for Network Security, Dorling Kingsley (2007)
5.	Woodward, J.D. and Orlans, Nicholos M., Biometrics, McGraw Hill (2002)
Refere	nces:
1.	Jiang, Richard, et al. Deep Biometrics. Springer-Verlag, 2019.
2.	Jain, A.K., Nandakumar, K. and Nagar, A., 2008. Biometric template security. EURASIP
	Journal on advances in signal processing, 2008, pp.1-17.
3.	Alonso-Fernandez, F., Fierrez, J. and Ortega-Garcia, J., 2011. Quality measures in biometric
	systems. IEEE Security & Privacy, 10(6), pp.52-62.

- 4. Campisi P. Security and privacy in biometrics. London: Springer; 2013 Jun 28.
- 5. Ratha, N.K. and Govindaraju, V. eds., 2007. Advances in biometrics: sensors, algorithms and systems. Springer Science & Business Media.

M3020313 BLOCK CHAIN TECHNOLOGY

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction	
M302313	Blockchain Technology	3-1-0-0	2021	
Prerequisites: Nil				

Course Objectives:

- 1. To provide students with a deeper understanding of the concepts of blockchain technology with due focus on decentralized computing and distributed systems described in the syllabus.
- 2. To help the students develop the ability to address real-world problems using the learned concepts of smart contracts and Dapps.
- 3. To connect the learned concepts with other business domains having opportunities of disruptive innovation with blockchain
- 4. To make students aware of the existing challenges of blockchain and focus on contributing revolutionary solutions of the same

Course Outcomes: After completion of this course, the students would be able to:

CO1: Apply the science of blockchain technology in modelling better solutions distributed computing.

CO2: Analyze the variants of blockchain/DLT and their adoption in respective domains **CO3**: Visualize the use of blockchain technology and its potential disruptions in multiple business domains in the coming era.

Program Learning Outcomes:

PLO1 Develop strong fundamental knowledge about the underlying concepts of blockchain technology

PLO 2 Demonstrate in-depth understanding of different blockchain types, architectures and

distributed consensus methods.

PLO 3 Critically compare and evaluate the need of Blockchain/DLT in industry

PLO 4 Alert the problems and challenges in deploying blockchain based Dapps and Smart Contracts with a deeper understanding of the multiple tradeoffs in the proposed product. **PLO 5** Demonstrates the disruptive potential of blockchain technology in revolutionizing the existing business models.

PLO 6 Acquire research skills to propose better algorithms/solutions for the existing challenges and contribute to the upcoming blockchain protocols.

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
CO	1 3	3	2	2	2	3]
co	2 2	3	3	3	3	2	1
COS	3 2	3	3	3	3	2	
Correlat	ion: 1: Slight (Lov	v) 2: Modera	te (Medium)) 3: Substan	tial (High))		-
llabus:							
Iodule	Content						
	Fundamentals Concept of Dist Ciphers, Hash F Merkle Trees, Inter-process Blockchain vs D	ributed Ledge unctions (SHA DAG, PKI. Dis communicatio	er. Cryptogra), Digital Sig stributed Sy on, peer-to	aphic principl natures, Publ vstems - Bas p-peer netw	es - Encryptic ic-Key Crypto ic principle ,	on Techniques , graphy (RSA, EC design, archite	Blo DSA ctur
	Blockchain netv PoW, PoS, pBF Model. Challen Hybrid. Potentia	T. Working of ges of Blockch	^f Bitcoin ne nain Techno	twork - Nod logy. Blockch	es, Forks, Mi nain Architect	ning, Wallets,	υτχ
	-	VM. Token St cts. Corda DLT	tandards - I . Why or Wł	ungible and Not Blockc	Non-fungible hain. Next Ge		edg chaiı
	_						
	Advanced Cor Blockchain Tri Organizations (I	lemma. Deco	entralized	Finance (De			
ab Expe	Blockchain Tri	lemma. Deco	entralized	Finance (De			
•	Blockchain Tri Organizations (I	lemma. Deco DAO). SegWit.	entralized BIP and EIP	Finance (De			
•	Blockchain Tri Organizations (I r iments: ents will be done	lemma. Deco DAO). SegWit.	entralized BIP and EIP	Finance (De			
kperime ext Boo 1. N	Blockchain Tri Organizations (I r iments: ents will be done	lemma. Deco DAO). SegWit. with Ethreum nain - Third Ed	entralized BIP and EIP and Hyperle ition, Imran	Finance (De edger Fabric Bashir, 2020			

3. Mastering Ethereum: Building Smart Contracts and DApps, by Andreas M. Antonopoulos and Gavin Wood

References:

- Bitcoin: A Peer-to-Peer Electronic Cash System, Satoshi Nakamoto, 2009, <u>https://bitcoin.org/bitcoin.pdf</u>.
- 2. The Basics of Bitcoins and Blockchains, Antony Lewis 2018.

M3010213, M3020245 CLOUD AND EDGE COMPUTING

Course Code	Course Name	Credit Split	Year of	
		Lecture/Lab/Seminar/Project	Introduction	
M301213, M302245	Cloud and Edge Computing	ge Computing 3-0-0-1		
Prerequisites: Prior knowledge of operating systems, distributed systems, computer networks,				

machine and deep learning.

Course Objectives:

- 1. To impart a comprehensive and in-depth understanding of Cloud and Edge Computing basics, technologies and applications to M.Tech students by introducing and researching cutting-edge topics, technologies, applications and implementations.
- 2. To expose the students to frontier areas of Cloud and Edge Computing while providing sufficient foundations for further study and research.

Course Outcomes:

Upon successful completion of this course, students will be able to:

C01: Understand the foundations of distributed algorithms and concepts and issues related tocloud and edge computing through completion of homework, quizzes, and examinations.

CO2: Prepare students for an industrial programming environment by successfully completing projects on cloud and edge computing.

C03: Expose students to current literature in cloud and edge computing

C04: Complete a term project, including independent research, oral presentation, and programming on latest advancement in cloud and edge computing.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	1	2		
CO2	3	2	2	2		
CO3	2	2	2	2		
C04	2	2	2	3	3	1

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

 Module Content
 Introduction to Distributed Algorithms, Cloud Computing Architecture and Management, Cloud Deployment Models, Cloud Service Models, Cloud Development Process Flows, Cloud Service Providers, Virtualization, Orchestration and Messaging,Networking in Cloud Computing, Cloud Storage,Containers, Microservices and Serverless Computing, Programming Models and Languages for Cloud Computing,
 Open Source Tools for IaaS, PaaS and SaaS, Open Source Tools for Research such as CloudSim and SimMapReduce, Software Defined Compute, Software-Defined Data Centers, Virtual Private Cloud Networking, Hybrid Cloud and Multi-Cloud Environments,

Cognitive Clouds, Mobile Cloud Computing, Green Cloud Computing. 3 Edge/Fog Computing Paradigms, Edge Architecture, Edge computing Applications, Real-Time Data Analytics through Edge Clouds, Edge Computing for 5G/6G, Cognitive Edge Context-Awareness, Kubernetes Platform Computing, for Edge Environments;Cloudlets, SocialMedia and Mashup Services; IoT Services on cloud, Components, IoT Core, IoT Examples (AWS IoT), IoT Data Analytics Platform on Cloud Environments. Case studies of Cloud and Edge Computing, Cloud Analytics, AI and ML at the Edge and in Δ the Cloud, Fault Tolerance, Load Balancing, Performance

and QoS,Security, Trustand Privacy in	Cloud	and	Edge, Future Research
Direction/Opportunity in the Cloud and Ed	ge Comput	ing.	

Books and other resources:

- 1. Recent Publications from top-Tier Cloud/System Conferences and Journals
- Rajiv Misra, Yashwant Singh Patel, Cloud and Distributed Computing: Algorithms and Systems, ISBN: 9788126520275, Wiley
- 3. Andrew S. Tanenbaum, Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd ed. Prentice Hall
- 4. Gerard Tel, Introduction to Distributed Algorithms, 2nd edition, Cambridge University Press, ISBN:9781139168724
- 5. K Chandrasekaran, Essentials of Cloud Computing, CRC Press, 2015
- 6. Rajkumar Buyya, Christian Vecchioola, S ThamaraiSelvi, Mastering Cloud Computing, McGrawHill, 2013
- 7. Cl Surianarayanan, PethuruRaj Chelliah, Essentials of Cloud Computing: A Holistic Perspective, Springer; 1st ed. 2019 ed.
- 8. Rajkumar Buyya, Satish N Srirama, Fog and Edge Computing: Principles and Paradigms, 2019, ISBN: 978-1-119-52498-4, Wiley
- 9. John R. Vacca, Cloud Computing Security: Foundations and Challenges, ISBN-10 : 1482260948, CRC Press
- 10. Brendan Burns, Joe Beda, Kelsey Hightower, Kubernetes: Up and Running: Dive Into the Future of Infrastructure, O'Reilly Publications, 2019.
- 11. Alan A. A. Donovan, Brian W. Kernighan, The Go Programming Language, Addison-Wesley, 2015
- 12. Steve Klabnik, Carol Nichols, The Rust Programming Language, No Starch Press, 2018
- Jeeva S. Chelladhurai, Vinod Singh, Pethuru Raj, Learning Docker, Packt Publishing, 2 edition, 2017
- 14. Agus Kurniawan, Learning AWS IoT, Packt Publishing, 2018
- 15. E. Krishnasamya, S. Varrettea, M. Mucciardib, Edge Computing: An Overview of Framework and Applications, Available Online: https://prace-ri.eu/wp-content/uploads/Edge-Computing-An-Overview-of-Framework-and-Applications.pdf.

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction
M301125, M302323	Cognitive Computing	3-0-0-1	2021

M3010125, M3020323 COGNITIVE COMPUTING

Prerequisites: 10th class biology and chemistry, basic background in simple differential equations and probability theory, interest in neuroscience and cognitive science.

Course Objectives:

- 1. To provide students with a basic understanding of the concepts of neuroscience, cognitive science and cognitive computing described in the syllabus.
- 2. To help them understand how to connect the concepts of cognitive science and neuroscience to the computing domain.
- 3. To make students aware of the current research trends in cognitive computing and artificial emotional intelligence.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Understand the various cognitive and emotional processes that occur in the brain/mind, and how this knowledge can be applied in the computing domain.

CO2: Analyze and evaluate critically the building of cognitive and affective computing models and systems.

CO3: Think about research ideas in the field of cognitive science and computing and pursue them.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

		PLO2			PLO5	PLO6
CO1	3	1		1		1
CO2	3	2	1	1	1	1
CO3	2	2	2		1	1

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

ModuleContent1Basic neuroscience: Neurons, Dendrites and Axons, Synapses, Synaptic and Action
Potentials, Action Potential generation and propagation, Brain organization, anatomy
and functions, Synaptic integration and plasticity, the Concept of a Basic Circuit,
Abstractions of Cortical Basic Circuits, Neocortical Brain Organization. Neuron models -
McCulloch-Pitts, Integrate-and-Fire, Hodgkin-Huxley, Compartmental modelling.

- 2 Cognitive science: Introduction, interdisciplinary nature. Cognition and human mind. The cognitive perspective of pattern recognition, Cognitive models of memory, Mental Imagery, Understanding a problem, a cybernetic view of cognition. Decision making: cognitive psychology of decision making, neural basis, consciousness and free will. Hierarchical temporal memories, Spiking Neural networks, hardware support for Brain Simulations. Eye Tracking and other modalities for data acquisition.
- Introduction to cognitive computing, Cognitive Computing Systems, Representations for Information and Knowledge, Principal Technology Enablers of Cognitive Computing, Cognitive Computing Architecture and Approaches, Applications of Cognitive Computing Systems. Cognitive Computing and Neural Networks: Reverse Engineering the Brain, Scope of Realization of Cognition in Artificial Intelligence, Brain Computer Interface: Introduction, Major Types, Brain Response useful for Building BCIs, Applications.
- Emotions and machines: Manifestations, classifications, purpose and importance, theories and models and neural basis of emotions; mood; emotion dynamics and factors that influence it; the need for artificial emotional intelligence; expressing, recognizing, processing and responding to emotions; challenges to accurate emotion perception and recognition; emotion as information in judgement and decision making; making moral judgements; computational models for synthetic emotion simulation; application of artificial emotional intelligence in areas such as smart video surveillance, virtual reality based training, advertising and market research, customer care, healthcare and assistive technologies.

References:

- 1. Neuroscience: Edited by Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, and Leonard E. White. Sinauer Associates Inc.
- 2. Principles of Neural Science: Edited by Eric Kandel, James Schwartz, Thomas Jessell, Steven Siegelbaum, and A.J. Hudspeth. McGraw-Hill Professional.
- 3. Cognitive neuroscience: the biology of the mind. Gazzaniga, M., Ivry, R. B., & Mangun, G. R. Cambridge: MIT press.

- 4. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. R. O'Reilly & Y. Munakata. MIT Press.
- 5. Theoretical neuroscience: computational and mathematical modelling of neural systems, Dayan, Peter, and Laurence F. Abbott.
- 6. The Book of GENESIS: Exploring Realistic Neural Models with the GEneralNEural Simulation System, Internet Edition: J. M. Bower and D. Beeman.
- 7. Pinker S, How the mind works, New york, NY: W W Norton.
- 8. Cognitive Science: An Introduction to the Science of the Mind: José Luis Bermúdez, Cambridge University Press.
- Cognitive Science: An Introduction to the Study of Mind: Friedenberg, J. and Silverman. G. W., Sage Publications.
- 10. A Companion to Cognitive Science: Bechtel, W., & Graham, G. (Eds.), Malden, MA: Blackwell.
- 11. Mind: Introduction to Cognitive Science. Thagard, P., Cambridge, MA: MIT Press.
- 12. How the mind comes into being: Introducing cognitive science from a functional and computational perspective. Butz, Martin V., and Esther F. Kutter. Oxford University Press.
- 13. Computational Modelling in Cognition: Principles and Practice. Lewandowsky, S., & Farrell, S. Thousand Oaks, CA, US: SAGE.
- 14. Artificial Intelligence and Soft Computing Behavioral and Cognitive Modelling of the Human Brain: Amit Konar, Publisher: CRC Press.
- 15. Cognitive Computing Theory and Applications: Venkat N. Gudivada, Vijay V. Raghavan, Venu Govindaraju, C.R. Rao, Publisher: Elsevier B.V.
- 16. Brain Computer Interfacing: An Introduction by Rajesh P. N. Rao., Publisher: Cambridge.
- 17. Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design. Nan Zheng, Pinaki Mazumder, John Wiley & Sons.
- 18. Well-Being: The Foundations of Hedonic Psychology: Edited by D. Kahneman, E. Diener, and N. Schwarz. Russell Sage Foundation.
- 19. Selected journal articles.

M2020104 COMPUTER ARCHITECTURE

	WIZ020104 COI	VIPUTER ARCHITECTURE	
Course Code	Course Name	Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction
M202104 Computer Architecture		3-0-0-0	2021
Prerequisites : N	il		I
Course Objectiv	ves:		
1. To help s	tudents understand the fundar	nentals behind a computer and it	s architecture.
2. To explo	re the working principles of all t	the important building blocks of a	i computer.
•		s are put together to design a so-	•
	re a few advanced topics in con		
•	•	rse, the students would be able t	0:
	•	of a computer system are working	
	•	r architecture while modelling sy	•
analysis.	, , , , , ,		
•	npare various types of cor	nputer architectures and can a	nalyze the desig
principle		•	, 0
• •		with the acquired knowledge of it	ts constituent
compone	•		
Program Learnir			
-	velop strong fundamental disci	nlinary knowledge	
		are of experimental, computation	nal or theoretics
nature		are or experimental, computation	
nature			

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3		2			
CO2		3	3	2	3	3
CO3	2	3	2	1	2	1
C04	2	2	3	2	3	2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	2 Content
1	Computer Fundamentals: Computer types, functional units, Basic concepts. Von Neumann Architecture Instruction Sets: Machine instructions, Memory operations, Addressing modes,
2	Instructions sets, Stacks, Subroutines, RISC & CISC architectures. Processing Unit: Components (Registers, ALU, Datapath), Instruction execution, Control signals, Operations of control unit: Hardwired controlled unit, Microprogrammed control unit) - horizontal and vertical micro-programming, Computer Arithmetic: Basic operations on signed numbers, Floating point operations.
3	Memory Management: Memory Hierarchy, Semiconductor based memory (Internal Organization, SRAM, DRAM), Read only memory, Cache memories – mapping techniques, Performance, Virtual memory (Address translation), Memory management, Secondary storage, RAID introduction Input/output: Accessing I/O devices, Bus Operations, I/O Modules, I/O Control mechanisms – Programmed I/O, Interrupt controlled, Direct Memory Access, I/O Interface (Serial, Parallel), I/O interconnection Standards.
4	Pipelining: Pipeline concept, Speedup, Throughput, Hazards in pipeline – structural hazard, data hazard, control hazard: Branch hazard; Dealing with hazards - Register Renaming, Branch Prediction. Advanced Computer Architecture: Parallel Processing - Flynn's classification, Amdahl's law, Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration, Interprocessor Communication and Synchronization, Cache Coherence, Vector/Array Processing.
Text Bo	ooks:
2.	C. Hamacher, Z. Vranesic, S. Zaky, and N. Manjikian, "Computer Organization," 6th Edition, 2011, McGraw-HillHigher Education. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design – The Hardware/Software Interface," 6th edition, 2020, Morgan Kaufmann. William Stallings, "Computer Organization & Architecture designing for performance,"8th Ed., 2009, Pearson
	P. Pal Chaudhuri, "Computer Organization and Design," 3rd Edition, 2008, PHI

5. Andrew S. Tanenbaum, "Structured Computer Organization," 6th Edition, 2012, Pearson.

References:

- 1. J. P. Hayes, Computer Architecture and Organization, 3rd Ed, 1998, Mcgraw-Hill Education.
- 2. M. M. Mano, Computer Systems Architecture, 3rd Ed., 1992, Pearson/PHI.

M2022204 COMPUTER NETWORKS AND SECURITY

Cours	se Code		Cou	rse Name	Lecture/	Credit Split Lab/Seminar/	Project	Year Introdu	-
M2022	204	Comp Securi		Networks a	nd	3-0-1-0		202	1
Prereq	uisites: N	lil					I		
Course	Objectiv	es:							
• To	introduce	the fu	ndame	entalaspects of co	omputer ne	tworks			
• To	enable th	e stude	ents to	understand varie	ous cyber at	tacks targeted	d on comp	outer netv	vorks
• To	enable th	e stude	ents to	develop various	security me	chanism for c	omputer	networks	
• То	enable th	e stude	ents to	simulate various	network at	tacks			
Course	Outcome	es: Afte	er com	pletion of this co	urse, the st	udents would	be able t	0:	
	CO1: Sur	nmariz	ze princ	ciples of Network	٢S				
	CO2: Des	cribe t	he laye	ered protocol mo	del.				
	CO3: Disc	crimina	ite betv	ween various pro	otocols				
	CO4: App	oraise s	ecurity	/ threats and reso	olve effectiv	vely			
				enges in differer					
Progra	m Learnir	ng Outo	comes:	,					
	PLO 1 De	velops	strong	fundamental dise	ciplinary kno	owledge			
	PLO 2 De	monst	rate re	esearch skills tha	t are of exp	erimental, co	mputatio	nal, or the	eoretical
	nature								
	PLO 3 Ap	ply sch	olarshi	ip to conduct ind	lependent a	nd innovative	research		
	PLO 4 Sh	ow cor	mmuni	cation skills in a	variety of f	ormats (oral,	written)	and to ex	pert and
	non-expe	ert aud	iences;	J					
	PLO 5 Pra	actice e	ethical	standards of pro	fessional co	nduct and res	earch;		
	PLO 6 A	cquire	profes	ssional skills su	ch as colla	borative skill	s, ability	to write	grants,
	entrepre	neurial	skills,	and write article	s for schola	rly journals if	it is taugh	nt by facul	ty in the
	departm	ent.							
Mappi	ng of cou	rse out	comes	with program le	earning out	comes:			
	PLO1	PL	.02	PLO3	PLO4	PLO5	PLO6		
CO1	3		2	3	2				
CO2	3		3	3	2				
CO3	2		3	3	2				
	_	 Slight (2: Moderate (Me	_	Substantial (H	 iσh))		
Syllabu		Jugin (<u> </u>		1511//		
Modul		nt							
1	Netwo	ork Bas	sics: Th	ne Network Edge	e, The Netv	vork Core. Ac	cess Netv	vorks. De	lay, Loss
–				rotocol Layers an	•				
		-	•	ICP, Electronic M				-	
		,0					6 W		
2	Transp	ort La	yer: Se	ervices, TCP, UD	P, Network	Layer: Functi	ons, desig	gn issues,	Internet
	Proto	:ol (IP),	, IPV4 &	& IPv6, Routers, I	Routing algo	orithms, Conge	estion Cor	ntrol Algor	ithms
	1								

3	Data Link Layer: Design issues, framing methods, Error Detection and Correction, PPP, Sliding Window Protocols, Multiple Access Protocols, Address Resolution, Protocol (ARP), Ethernet, Link Layer Switches, Spanning Tree Protocol, VLAN
4	Security Attacks, Security Services, Security Mechanisms, Key Management and Distribution, User Authentication Protocols, SSL, TLS, Wireless Network Security, Electronic Mail Security, Vulnerability Analysis, Attacks in sensor and IoT networks, Endpoint Security, familiarization of Network simulators - NS2/NS3 or Cooja/Contiki and simulation of attacks and analyze network performance.
Text Boo 1. Ja	ks: mes Kurose and Keith Ross, Computer Networking: A Top-Down Approach, Pearson

- 2. Andrew S. Tanenbaum, Computer Networks 5th Edition, Pearson
- 3. William Stallings, Cryptography and Network Security Principles and Practice, Prentice Hall
- 4. VlasiosTsiatsis, Stamatis Karnouskos, Jan Holler, David Boyle, Catherine Mulligan, Internet of Things: Technologies and Applications for a New Age of Intelligence. Elsevier Academic press.
- 5. Zaigham Mahmood, Connected Vehicles in the Internet of Things: Concepts, Technologies and Frameworks for IoV, Springer
- 6. Ian F. Akyildiz, Mehmet Can Vuran-Wireless Sensor Networks. Wiley.

References:

- 1. Peterson L.L, Davie B.S, Computer Networks, A systems approach, 3/E, Harcourt Asia, 2003
- 2. Keshav S., An Engineering Approach to Computer Networking, Pearson Education, 2000.
- 3. Shinde S.S, Computer Network, New Age International, 2009
- 4. Pethuru Raj and Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases, CRC Press.
- 5. Adrian McEwen, Designing the Internet of Things, Wiley, 2013.

Course Code	Course Name	Credit Split	Year of	
		Lecture/Lab/Seminar/Project	Introduction 2021	
M301232	Computer Vision	3-0-0-1		
Prerequisites: Ni	il			
Course Objective	s:			
1. To pro of comput	vide students with a ter vision described in the syll	good understanding of abus.	the concepts	
2. To help th	e students develop the ability	y to solve problems using the lear	ned concepts.	
3. To conne	ect the concepts to other	domain both within and wit	hout mathematics	
such asma	achine learning and pattern re	ecognition.		
Course Outcome	s: After completion of this co	urse, the students would be able t	:0:	
CO1: Und	erstand the foundations of m	odern computer vision theory, pr	oblem and state of	
the art so	lutions.			
	yse and evaluate critically prithms and systems.	the building and integrati	on of computer	
CO3: Desi	gn and demonstrate a workin	g computer vision system throug	n team research	
project, ai	nd project report, presentatic	on.		
Program Learning	g Outcomes:			
PLO 1 Dev	/elop strong fundamental disc	ciplinary knowledge		
		t are of experimental, computation	onal, or theoretical	
nature				
PLO 3 App	bly scholarship to conduct ind	ependent and innovative research	า	
PLO 4 Sho	• •	variety of formats (oral, written)		

M3010232 COMPUTER VISION

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

<u> </u>				0		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Synabus:	
Module	Content
1	The Four Rs of Computer Vision, Geometry of Image Formation and Sensing, Single/Two View Geometry, Camera Calibration, Vanishing Points, Planar Scenes and Homography, Interest Point Detection, Robust Correspondence Estimation
2	Feature Extraction: Edges - Canny, LoG, DoG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.
3	Image Segmentation: Region Growing, Edge Based approaches to segmentation, Graph- Cut, Mean-Shift, MRFs, Texture Segmentation; Object detection
4	Motion Analysis: Background Subtraction and Modelling, Optical Flow, KLT, Spatio- Temporal Analysis, Dynamic Stereo; Motion parameter estimation.

Text Books:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, 2003.
- 3. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer
- 4. Vision, Second Edition, Cambridge University Press, March 2004.

References:

- 1. Simon J. D. Prince. 2012. Computer Vision: Models, Learning, and Inference (1st. ed.). Cambridge University Press, USA.
- 2. E. R. Davies. 2017. Computer Vision, Fifth Edition: Principles, Algorithms, Applications, Learning (5th. ed.). Academic Press, Inc., USA.

M3010252 CONNECTED ENVIRONMENTS AND ENABLING TECHNOLOGIES

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction				
M301252	Connected Environments and Enabling Technologies	1-3-0-0	2021				
Prerequisites: P	rior knowledge of Compute	er Networks, Distributed Com	puting, DBMS,				
Programming in	Python						
Course Objectiv	Course Objectives:						
necessar	y principles required for future co	ne IoT domain and learn details re onnected systems. t application areas of IoT along					

- To expose the students to the different application areas of IoT along with providing sufficient foundations for further study and research.
- 3. To improve the critical reading, presentation, and research skills.

Course Outcomes:

Upon successful completion of this course, students will be able to:

C01: Understand the various building blocks of IoT and its characteristics and the application areas.

CO2: Explore the relationship between IoT, cloud computing, and big data and apply basic principles to develop practical skills of IoT and related fields.

C03: Complete written paper reviews, an oral paper presentation, and a final course project.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1		1		
CO2	2	2	1	2		1
CO3	2	2	1	2		1

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus: Connected Environments and Enabling Technologies

Module Content

- Demystifying the IoT Paradigm, IoT Network Architecture and Design, IoT Sensors and Devices, IoT Edge Gateways, IoT Access Technologies, IP as the IoT Network Layer, IoT Standards and Protocols, Machine to Machine Communications, RFID, 5G, Softwaredefined Networking (SDN), Network Functions Virtualization (NFV), Semantic Technologies, Discovery Services, Industrial IoT, Internet of Medical Things, Semantic Web of Things and Cognitive IoT
- 2 Microcontrollers, Single Board Computers (SBCs) and boards based on Arduino and Raspberry PI, Data Transmission and Service Access Protocols such as MQTT, COAP, etc., IoT Graphical user interface: Web servers, HTML, PHP, Scripting languages: - Python, Bash, IoT application development for Android and iOS phones, Embedded Linux and Applications, Cotiki OS, Cooja Simulator, IoT Database management: MySQL, MongoDB
- 3 IoT programming languages for Edge devices, gateways and cloud applications, System on Chip (SoC) Technologies and Tools including NVIDIA[®] Jetson, REST Application programming interfaces (APIs) for Device and Cloud Services, Intelligent IoT Devices and Applications through AI Processing, IoT Data Analytics Platforms, IoT Data Virtualization Platforms, IoT Data Visualization Platform, IoT Edge Data Analytics, IoT-Cloud Integration through AWS IoT for the Edge, Lambda@Edge, etc.
- 4 IoT-enabled Applications: Smart Home, Smart Building, Smart City, Smart Health, Smart Transportation, Environmental Monitoring, Smart Industry, Smart Grid, Smart Farming, Public Safety, Case Studies.

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals
- Adrian McEwen, Hakim Cassimally, Designing the Internet of Things, ISBN: 978-1-118-43062-0, 2013, Wiley
- 3. Damon Parker, Arduino Programming, 2020, ISBN-13: 978-1801128001, New Begin Ltd.
- 4. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of

Things, Cisco Press, ISBN-13: 978-1-58714-456-1

- 5. Dawoud Shenouda Dawoud, Peter Dawoud, Microcontroller and Smart Home Networks, 2020, ISBN-13 : 978-8770221566, River Publishers
- 6. Harry Fairhead, Raspberry Pi IoT In C, 2020, ISBN-13 : 978-1871962635, I/O Press
- 7. Jean-Philippe Vasseur, Adam Dunkels, Interconnecting Smart Objects with IP: The Next Internet, ISBN-13: 978-0123751652, 2010, Morgan Kuffmann
- 8. Maggie Lin and Qiang Lin, Internet of Things Ecosystem, ISBN-13: 979-8597147208, 2021
- 9. Ovidiu Vermesan, Peter Friess, Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems, ISBN: 9788792982735, 2013, River Publishers
- Pethuru Raj, Anupama C. Raman, The Internet of Things Enabling Technologies, Platforms, and Use Cases, ISBN 9781498761284, Taylor & Francis, 2017
- 11. Qinghao Tang, Fan Du, Internet of Things Security: Principles and Practice, 2021, Springer
- 12. Rajesh Singh, Anita Gehlot, Lovi Raj Gupta, Bhupendra Singh, Mahendra Swain, Internet of Things with Raspberry Pi and Arduino, ISBN 9780367248215, 2019, CRC Press
- Theo Lynn, John G. Mooney, Brian Lee, Patricia Takako Endo, The Cloud-to-Thing Continuum: Opportunities and Challenges in Cloud, Fog and Edge Computing, 2020, ISBN-13: 978-3030411091, Palgrave Macmillan.
- Vijay Madisetti, ArshdeepBahga, Internet of Things (A Hands-on-Approach), ISBN-13: 978-8173719547, 2015, Orient Blackswan Private Limited - New Delhi
- 15. Zach Shelby, Carsten Bormann, 6LoWPAN: The Wireless Embedded Internet, ISBN: 978-0-470-74799-5, Wiley .

M3010224 CRYPTOGRAPHIC ENGINEERING

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction				
M301224	Cryptographic Engineering	3-0-0-1	2021				
Prerequisites:	A basic understanding of algebra,	modular arithmetic, and familiar	ity				
with basic cryptography algorithms							
Course Objectiv	/es:						
1. Learn	modern cryptographic algorit	hms, their implementations ir	n contemporary				
computi	ng platforms and security analysis						
	countermeasures to thwart i	mplementation-level attacks o	on cryptographic				
operatio	ons in hardware and software						
	appropriate cryptographic technic						
	es: After completion of this cours						
	ply appropriate cryptographic	techniques to solve real-wor	ld problems in				
	tion security						
	alyze the attack surface of a s	ystem in order to realize eff	ective mitigation				
	es against threats						
-	ploit cryptography standards to	create standards-compliant sec	ure software and				
	re systems						
Program Learni	0						
	evelop strong fundamental discipl	, 0					
	emonstrate research skills that a	re of experimental, computatior	nal, or theoretical				
nature							
	pply scholarship to conduct indepe						
	how communication skills in a var	riety of formats (oral, written) a	ind to expert and				
•	ert audiences;						
	ractice ethical standards of profess						
	Acquire professional skills such	•					
	eneurial skills, and write articles fo	or scholarly journals if it is taugh	t by faculty in the				
departm	ient.						

		f course outco PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
	CO1	3	3	2	2	1	2
	CO2	3	3	3	2	1	2
	CO3	2	1	1	2	3	3
		on: 1: Slight (Lo	w) 2: Modera	ate (Mediun	n) 3: Substa	antial (High))	
_	abus:						
00		Content					
	F	unctions, SH	A-1, SHA3, M software and	AC, HMAC	C, Practical ir	nplementatio	n Ciphers, RC4, H n of symmetric gh-Performance
		Cryptography,		Key Excha	nge, Kyber K		mal, ECC, Lat Algorithm, Parame e and hardware
	ł	ECDH with N selection and p	IIST and Brain practical imple	npool curve mentation d	s, Dilithium, of digital sigr	HSS, XMSS hature scheme	Brainpool curves, , XMSSMT, Parame es vable security, for
		methods and security, Hash-based de	verification to	ndom numb	per generato	ded design, m r (DRG.4 acc.	AIS 31), True rand
	r 	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras	ndom numk c. AIS 31), Java Crypt Generation structure (I	per generato protocols lik ography Ext (CNG) and PKI) and Ha	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib	netrics for measu
	r 	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras	ndom numk c. AIS 31), Java Crypt Generation structure (I	per generato protocols lik ography Ext (CNG) and PKI) and Ha	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ale Key Managem
	t Book	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, ke	ools for sec ndom numb c. AIS 31), Java Crypt Generation structure (I y exchange	per generato protocols lik ography Ext (CNG) and PKI) and Ha methods,	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ale Key Managem
1	t Book	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k s: . K. Koç. Crypto	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, ke ographic Engin	ools for sec ndom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009.	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ale Key Managem
1	t Book 1. A Ç 2. Joa	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k s: . K. Koç. Crypto chim von zur G	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Crypto	ools for sec ndom numk c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Spri	per generato protocols lik ography Ext (CNG) and PKI) and Ha methods, mger, 2009. nger, 2015	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ale Key Managem
1	t Book 1. A Ç 2. Joa 3. Wil 4. Jea	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k s: K. Koç. Crypto chim von zur G liam Stallings, f	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Crypto Cryptography a nasson, Serious	ools for sec ndom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin and Networ s Cryptogr	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ale Key Managem urity Module (HS
	t Book 1. A Ç 2. Joa 3. Wil 4. Jea Enc 5. Dav	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k S: . K. Koç. Crypto chim von zur G liam Stallings, o n-Philippe Aum ryption, No Sta vid Wong, Real	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engin athen, Crypto Cryptography a nasson, Serious arch Press, 201 -World Cryptog	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin and Networ s Cryptogr 7 graphy, Man	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, mger, 2009. nger, 2015 k Security: P aphy: A Pa nning Publica	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and I ractical Intro ations, July 20	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod
1 2 2 2 5 6	t Book 1. A Ç 2. Joa 3. Wil 4. Jea 5. Dav 5. F. R 7. C. F	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k s: . K. Koç. Crypto chim von zur G liam Stallings, o n-Philippe Aum ryption, No Sta vid Wong, Real- codríguez-Henr configurable Ha Rebeiro, D. Mu	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Crypto arch Press, 201 World Crypto fquez, A. D. Pé ardware, Spring	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin School, Sprin and Networ s Cryptogr 7 graphy, Man graphy, Man ger 2007.	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P aphy: A P aphy: A P nning Publica aqib and Ç. H	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and I ractical Intro ations, July 20 K. Koç. Crypto	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t Book 1. A Ç 2. Joa 3. Wil 4. Jea 5. Dav 5. F. R 7. C. F Spr 3. M.	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k S: . K. Koç. Crypto chim von zur G liam Stallings, c n-Philippe Aum ryption, No Sta vid Wong, Real codríguez-Henr configurable Ha Sebeiro, D. Mu inger 2015. Joye and M. Tu	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Cryptol Cryptography a hasson, Serious arch Press, 201 World Cryptog iquez, A. D. Pé indware, Spring khopadhyay,	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin and Networ s Cryptogr 7 graphy, Man erez, N. A. Si ger 2007. and S. Bha nalysis in Cr	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P aphy: A Pa nning Publica aqib and Ç. H attacharya.	r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and F ractical Intro ations, July 20 K. Koç. Crypto Timing Chanr Springer 2012	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod 21 graphic Algorithms nels in Cryptograp
	t Book 1. A Ç 2. Joa 3. Wil 4. Jea 5. Dav 5. F. R 6. F. R 7. C. F 8. Spr 3. M. 1 9. Sim	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k S: . K. Koç. Crypto chim von zur G liam Stallings, o n-Philippe Aum ryption, No Sta vid Wong, Real odríguez-Henr configurable Ha sebeiro, D. Mu inger 2015. Joye and M. Tu on Rubinstein-	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Cryptol Cryptography a hasson, Serious arch Press, 201 World Cryptog iquez, A. D. Pé indware, Spring khopadhyay,	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin and Networ s Cryptogr 7 graphy, Man erez, N. A. Si ger 2007. and S. Bha nalysis in Cr	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P aphy: A Pa nning Publica aqib and Ç. H attacharya.	r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and F ractical Intro ations, July 20 K. Koç. Crypto Timing Chanr Springer 2012	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod 21 graphic Algorithms nels in Cryptograp
1 2 3 2 9 7 7 8 9 9 9	t Book 1. A Ç 2. Joa 3. Wil 4. Jea 5. F. R 5. F. R 7. C. F 3. M. 9. Sim erence	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k S: . K. Koç. Crypto chim von zur G liam Stallings, o n-Philippe Aum ryption, No Sta vid Wong, Real codríguez-Henr configurable Ha sebeiro, D. Mu inger 2015. Joye and M. Tu on Rubinstein- s:	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Crypto Gryptography a hasson, Serious arch Press, 201 World Cryptog iquez, A. D. Pé indware, Spring khopadhyay, install. Fault A Salzedo, Cryp	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I <u>y exchange</u> eering, Sprin School, Sprin and Networ School, Sprin and Networ s Cryptogr 7 graphy, Man erez, N. A. S ger 2007. and S. Bha nalysis in Cr tography, S	Der generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P aphy: A P nning Publica aqib and Ç. H attacharya.	r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and F ractical Intro ations, July 20 K. Koç. Crypto Timing Chanr Springer 2012	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod 21 graphic Algorithms nels in Cryptograp
1 2 3 2 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	t Book 1. A Ç 2. Joa 3. Wil 4. Jea 5. Dav 5. F. R 6. F. R 7. C. F 8. M. 9. Sim erence 1. Alka 2. Ros	methods and security, Hash-based de number genera PKC#11, MS C CSP), Cryptog SQLEKM), Pub K.509, secure k s: . K. Koç. Crypto chim von zur G liam Stallings, o n-Philippe Aum ryption, No Sta id Wong, Real- configurable Ha codríguez-Henr configurable Ha codríguez-Henr configurable Ha codríguez-Henr configurable Ha configurable Ha conf	verification to eterministic ran ator (PTG.2 ac NG, MS CAPI, raphy Next G lic Key Infras ey storage, key ographic Engine athen, Crypto Gryptography a hasson, Serious arch Press, 201 World Crypto fquez, A. D. Pé ardware, Spring khopadhyay, install. Fault A Salzedo, Crypt gebra for Crypt	ools for secondom numb c. AIS 31), Java Crypt Generation structure (I y exchange eering, Sprin School, Sprin and Networ s Cryptogr 7 graphy, Man erez, N. A. S ger 2007. and S. Bha nalysis in Cr tography, S cologists, Sp	per generato protocols lik ography Ext (CNG) and PKI) and Ha methods, nger, 2009. nger, 2015 k Security: P aphy: A P aphy: A P anning Publica aqib and Ç. H attacharya.	ded design, m r (DRG.4 acc. e KMIP and A ension (JCE), SQL Extensib ardware Secu rinciples and I ractical Intro ations, July 20 K. Koç. Crypto Timing Chanr Springer 2012 8	AIS 31), True rand AIS 31), True rand API interfaces such Microsoft Crypto ole Key Managem urity Module (HS Practice, Pearson oduction to Mod 21 graphic Algorithms nels in Cryptograp

M3022202 CYBER ANALYTICS

1	urse Co	de Co	ourse Name	Loctu	Credit Sp ire/Lab/Semii		Year of Introduction	
N120	2202	Cyber A	nalytics	Lett	3-0-0-0	ial/Project	2021	
		I =	analytics		3-0-0-0		2021	
	equisite							
	se Obje							
			supervised, uns	-			earning algori	ithms
			ts to apply ML t	•				
			s to perform cy		detection, ris	k estimation, v	ulnerability	
		· ·	attack detection					
			to design ML b	-	-			
Cour			completion of t					
			pervised, unsup				• •	
		• ·	rvised and unsu	•		•		
			owledge of data	=			=	risk
			ability detectio	n, cyber att	ack detection	and preventio	n.	
Prog		arning Outco						
			ong fundament	•				
	PLO 2	2 Demonstrat	te research skill	s that are o	f experimenta	I, computatior	hal, or theore	tical
	natu							
			arship to condu	-				
			nunication skills	in a variet	y of formats (c	oral, written) a	nd to expert a	and
		expert audier						
			ical standards o	-				
		• •	fessional skills s			•	-	
		•	kills, and write a	articles for s	scholarly journ	als if it is taugi	nt by faculty ii	n the
		rtment.		<u> </u>				
Map			mes with prog					1
		PLO1		PLO3	PLO4	PLO5	PLO6	-
	CO1	3	2	3	2			
			2		-			
1	CO2	3	3	3	2			
	CO2 CO3	3	3	3	2			-
(Cor	CO3	2	3	3	2	ial (High))		
	CO3 relation	2	+	3	2	ial (High))]
Sylla	CO3 relation bus:	2 : 1: Slight (Lo	3	3	2	ial (High))		
Sylla Mod	CO3 relation bus: ule Cor	2 : 1: Slight (Lo ntent	3 w) 2: Moderate	3 e (Medium)	2 3: Substant		xploratory Pa	
Sylla	CO3 relation bus: ule Cor Dat	2 : 1: Slight (Lo I tent a Ingestion, I	3 w) 2: Moderate	3 e (Medium) ; and Clean	2 3: Substant ing, Data Visu	alization and E	•	
Sylla Mod	CO3 relation bus: ule Cor Dat Rec	2 : 1: Slight (Lo I tent a Ingestion, I ognition, Cla:	3 w) 2: Moderate Data Processing	3 e (Medium) ; and Clean tering, Feat	2 3: Substant ing, Data Visu ure extract	alization and E on, Feature	Selection, Ra	ndom
Sylla Mod	CO3 relation bus: ule Cor Dat Rec Pro	2 : 1: Slight (Lo itent a Ingestion, I ognition, Clas jections, Mod	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S	3 e (Medium) ; and Clean tering, Feat Specification	2 3: Substant ing, Data Visu ure extract n, Model Sele	alization and E on, Feature ction and Fittir	Selection, Rang, Evaluation	ndom , Bias,
Sylla Mod	CO3 relation bus: ule Cor Dat Rec Pro vari	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classifications, Mod jections, Mod ance and No	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a	3 e (Medium) ; and Clean tering, Feat Specification and Limitat	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of	alization and E on, Feature ction and Fittir Dimensionali	Selection, Rang, Evaluation ty, Application	ndom , Bias, ons of
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro Vari Dat	2 : 1: Slight (Lo a Ingestion, I ognition, Cla jections, Moo ance and No a Analytics to	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a o Security Challe	3 e (Medium) g and Clean tering, Feat Specification and Limitat enges, Cybe	2 3: Substant ing, Data Visu ure extract n, Model Select ions, Curse of r security Dat	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scie	Selection, Ra ng, Evaluation ty, Applicatio ence Applicat	ndom , Bias, ons of ions
Sylla Mod	CO3 relation bus: ule Cor Dat Rec Pro vari Dat	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification jections, Mod ance and No a Analytics to supervised La	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat	alization and E on, Feature tion and Fittir Dimensionali asets, Data Scio a and Operat	Selection, Ra ng, Evaluation ty, Applicatio ence Applicat ions, Properti	ndom , Bias, ons of ions es of
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro Vari Dat Uns Dat	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification jections, Mod ance and No a Analytics to supervised La asets, Data	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat	alization and E on, Feature tion and Fittir Dimensionali asets, Data Scio a and Operat	Selection, Ra ng, Evaluation ty, Applicatio ence Applicat ions, Properti	ndom , Bias, ons of ions es of Rule
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro vari Dat Uns Dat	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification jections, Mod ance and No a Analytics to supervised Lo asets, Data I ning, Variation	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and ns	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T d Pre-proc	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat Types of Dat essing, Data	alization and E on, Feature tion and Fittir Dimensionali asets, Data Sci a and Operat Representatior	Selection, Ra ng, Evaluation ty, Application ence Application ions, Propertion, Association	ndom , Bias, ons of ions es of Rule on
Sylla Mod 1	CO3 relation bus: Ule Cor Dat Rec Pro Vari Dat Uns Dat Mir the	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification, Classification, Classification, Classification jections, Moo ance and No ance and No ance and No a Analytics to supervised Lo supervised Lo asets, Data I ning, Variation Apriori Algor	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a o Security Challe earning, Data C Exploration and ithm, Clustering	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partition	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat Types of Data essing, Data	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scio a and Operat Representation Hierarchical C	Selection, Ra ng, Evaluation ty, Applicatio ence Application ions, Properti n, Association	ndom , Bias, ons of ions es of Rule on nifold
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro Vari Dat Uns Dat Mir the Disc	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification jections, Moo ance and No a Analytics to supervised Lo asets, Data I ning, Variation Apriori Algor covery, Spect	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and ss ithm, Clustering ral Embedo	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partition ding, Anom	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat groups of Data essing, Data al Clustering, H aly Detec	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scio a and Operat Representatior Hierarchical C ction, Distance	Selection, Ra ng, Evaluation ty, Application ence Application ions, Propertion, Association clustering, Ma -based C	ndom , Bias, ons of ions es of Rule on nifold Dutlier
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro Var Dat Dat Dat Disc Disc	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification, Classification, Classification, Classification jections, Mod ance and No a Analytics to ance and No a Analytics to asets, Data I asets, Data I ang, Variation Apriori Algor covery, Spect ection, kNN I	3 w) 2: Moderate Data Processing Ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and s ithm, Clustering ral Embedo pased approa	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partitiona ding, Anom ich, Density	2 3: Substant ing, Data Visu ure extract n, Model Selec ions, Curse of r security Dat Types of Dat essing, Data al Clustering, H aly Detec -based Out	alization and E fon, Feature ction and Fittir Dimensionali asets, Data Scie a and Operat Representation Hierarchical C ction, Distance ier Detectio	Selection, Ra ng, Evaluation ty, Application ence Application ions, Properti n, Association Clustering, Ma -based C n, Clustering-	ndom , Bias, ons of ions es of Rule on nifold Dutlier based
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro vari Dat Uns Dat Mir the Disc Det Out	2 : 1: Slight (Lo itent a Ingestion, I ognition, Classification jections, Mod ance and No a Analytics to supervised Lo asets, Data I ning, Variation Apriori Algor covery, Spect ection, kNN I lier Detectio	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and sithm, Clustering ral Embedo based approa n, One-class lea	3 e (Medium) g and Clean tering, Feat opecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partition d Pre-proc g, Partition ding, Anom ch, Density arning base	2 3: Substant ing, Data Visu ure extract n, Model Select ions, Curse of r security Dat groups of Data essing, Data al Clustering, H aly Detect based Out	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scio a and Operat Representation dierarchical C ction, Distance ier Detectio ecurity Applica	Selection, Ra ng, Evaluation ty, Application ence Application ions, Propertion Association clustering, Ma -based C n, Clustering- ntions, Data N	ndom , Bias, ons of ions es of Rule on nifold Dutlier based Aining
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro vari Dat Dat Dat Disc Disc Out for	2 1: 1: Slight (Lo itent a Ingestion, I ognition, Classification, Classification jections, Moo a Analytics to a Analy	3 w) 2: Moderate Data Processing Ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and s ithm, Clustering ral Embede based approa n, One-class lea tection, Steppin	3 e (Medium) g and Clean tering, Feat pecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partitions ding, Anom ich, Density arning base og-stone De	2 3: Substant ing, Data Visu ure extract n, Model Select ions, Curse of r security Dat groups of Data essing, Data al Clustering, H aly Detect based Out	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scio a and Operat Representation dierarchical C ction, Distance ier Detectio ecurity Applica	Selection, Ra ng, Evaluation ty, Application ence Application ions, Propertion Association clustering, Ma -based C n, Clustering- ntions, Data N	ndom , Bias, ons of ions es of Rule on nifold Dutlier based Aining
Sylla Mod 1	CO3 relation bus: ule Cor Dat Rec Pro Vari Dat Uns Dat Mir the Disc Out for Sco	2 1: 1: Slight (Lo itent a Ingestion, I ognition, Classification, Classification jections, Moo a Analytics to a Analy	3 w) 2: Moderate Data Processing ssification, Clust delling, Model S ise, Strengths a Security Challe earning, Data C Exploration and ral Embed based approa n, One-class lea tection, Steppin r Phishing Detect	3 e (Medium) g and Clean tering, Feat opecification and Limitat enges, Cybe Collection, T d Pre-proc g, Partitiona ding, Anom ich, Density arning base ing-stone De ction	2 3: Substant ing, Data Visu ure extract n, Model Select ions, Curse of r security Dat cypes of Data essing, Data al Clustering, H aly Detect -based Out ed Outliers, Se tection, Malw	alization and E on, Feature ction and Fittir Dimensionali asets, Data Scio a and Operat Representation dierarchical C ction, Distance ier Detectio ecurity Applica	Selection, Ra ng, Evaluation ty, Application ence Application ions, Propertion Association clustering, Ma -based C n, Clustering- ntions, Data N , Directed Ano	ndom , Bias, ons of ions es of Rule on nifold Dutlier based Aining

	Classifiers, Linear Classifiers, Decision Trees and Random Forests, Random Forest, Support
	Vector Machines, Semi-Supervised Classification, Perceptron, Neural Networks, Dee
	Networks, Topological Data Analysis, Ensemble Learning, Adaboost, One-clas
	Learning, Online Learning, Metrics for Unbalanced Datasets, Securit
	Applications, Intrusion Detection, Malware Detection, Spam and Phishing Detection
	cyber security risks estimation
ļ	Big Data Techniques and Security, Ingesting the Data, Persistent Storage, Computing an
	Analyzing, Techniques for Handling Big Data, Visualizing, Streaming Data, Big Dat
	Security, Implications of Big Data Characteristics on Security and Privacy, Mechanisms for
	Big Data Security Goals
Text E	Books:
1.	
	2019
2.	Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches
	in Cybersecurity Analytics, Springer 2020
3.	Clarence Chio, David Freeman, Machine Learning & Security, O Reilly, 2018
4.	Mark Stamp, Introduction to Machine Learning with Applications in Information Security,
	CRC Press, 2018
5.	D K Bhattacharyya, J K Kalita, Network Anomaly Detection, A machine Learning
	Perspective, CRC Press, 2014
6.	Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts
	By AurélienGéron, "O'Reilly Media, Inc.", 2019
7.	PN. Tang, M. Steinbach, and V. Kumar: Introduction to Data Mining, Addison Wesley,
	2006
8.	Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, Morgan
	Kaufman Publishers, Third Edition, 2011.
efere	ences:
1.	A Practical Approach for Machine Learning and Deep Learning Algorithm
	by Abhishek Kumar Pandey, Pramod Singh Rathore, S Balamurugan, BPB Publication
	2019
2.	Soma Halder, Sinan Ozdemir, Hands-On Machine Learning for Cybersecurity: Safeguar
	your system by making your machines intelligent using the Pytho
	ecosystem, Packt Publishing (December 31, 2018)
3.	Alazab, Mamoun, Tang, MingJian, Deep Learning Applications for Cyber Security, Springe
	2019

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction				
M301263	Cyber Big Data Analytics	3-0-0-1	2021				
Prerequisites:	Nil		•				
Course Objectiv	Course Objectives:						
	ort skills pooded for updars	tanding and anniving machine lear	ning and hig data				

M3010263 CYBER BIG DATA ANALYTICS

 To impart skills needed for understanding and applying machine learning and big data technologies
 To equip the students with the ability to identify and applying problems solvable with

 To equip the students with the ability to identify and analyze problems solvable with machine learning and big data technologies

3. To impart solution design capability with data mining and big data technologies

Course Outcomes: After completion of this course, the students would be able to:

CO1: Apply the knowledge of data analytics to analyze cyber data for security threats, risk estimation, vulnerability detection, cyber attack detection and prevention.

CO2: Design supervised and unsupervised learning algorithms for cyber security problems.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences.

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants,

entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

· <u> </u>				0		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Volume, velocity and variety of cyber data, Familiarization of cyber security
	datasets such as DARPA, KDD'99 Cup, NSL-KDD, CAIDA, ISOT'10, ISCX'12, CTU-13,
	UNSW-NB15, CIC-IDS2018 CIC-IDS2017, CIC-DDoS2019, ADFA IDS, CERT, Bot-IoT, Data
	Ingestion, Data Processing and Cleaning, Data Visualization, Handling quality problems
	in cyber security datasets, feature engineering, Dimensionality reduction and sampling
	techniques for valuable cybersecurity data extraction, recency analysis of
	datasets, Representation of cyber-attack data for cross-platform processing
2	UnsupervisedLearning, Association
	RuleMining, Clustering, Partitional Clustering, Hierarchical Clustering, Manifold
	Discovery, Spectral Embedding, Supervised Learning, Naïve Bayes, Nearest Neighbors
	Classifiers, Linear Classifiers, Decision Trees and Random
	Forests, RandomForest, Support Vector Machines, Semi-Supervised
	Classification Perceptron, Neural Networks, Deep Networks, Topological Data
	Analysis, Ensemble Learning, Adaboost,
	Applications of ML techniques in various cyber security problems such as intrusion
	detection, malware detection, spam and phishing detection, cyber security risks
	estimation etc.
3	Introduction to Big Data Technology, Hadoop,
	HDFSand MapReduce, Hadoop Environment, Messaging systems, Distributed SQL Query
	Engines, Introduction to Apache Spark, Spark Cluster ASpark Core, High level
	architecture, Spark Context, RDD, Lazy Operation, Caching methods, Spark SQL
	Machine learning with spark, Spark Machine Learning libraries, Spark ML and
	Applications, Graph Processing with Spark
4	Application of big data technologies in various cyber security problems such as anomaly
	detection, DDoS detection, intrusion detection, network monitoring, malware detection,
	phishing detection, network monitoring, cyber threat intelligence, behavioral
	analytics, advanced persistent threat (APT) detection, fake news detection in social
	media networks
Text Boo)ks:
1. C	ybersecurity Analytics, Rakesh M. Verma, David J. Marchette, Chapman and Hall/CRC,
	019
2 T	ony Thomas, Athira P. Vijayaraghayan, Sabu Emmanuel, Machine Learning Approaches

2. Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches

in Cybersecurity Analytics, Springer 2020

- 3. Clarence Chio, David Freeman, Machine Learning & Security, O Reilly, 2018
- 4. Mark Stamp, Introduction to Machine Learning with Applications in Information Security, CRC Press, 2018
- 5. D K Bhattacharyya, J K Kalita, Network Anomaly Detection, A machine Learning Perspective, CRC Press, 2014
- 6. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts By AurélienGéron, "O'Reilly Media, Inc.", 2019
- 7. P.-N. Tang, M. Steinbach, and V. Kumar: Introduction to Data Mining, Addison Wesley, 2006
- 8. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, Morgan Kaufman Publishers, Third Edition, 2011.
- 9. Data Analytics with Spark Using Python, By Jeffrey Aven, Addison Weley Data & Analytics series, 2018
- 10. Big Data Analytics with Spark, Mohammed Guller, APress, 2015

References:

- 1. A Practical Approach for Machine Learning and Deep Learning Algorithms by Abhishek Kumar Pandey, Pramod Singh Rathore, S Balamurugan, BPB Publications, 2019
- Soma Halder, Sinan Ozdemir, Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystem, Packt Publishing (December 31, 2018)
- 3. Alazab, Mamoun, Tang, MingJian, Deep Learning Applications for Cyber Security, Springer 2019
- 4. Anand Rajaraman, Jeffrey D Ullman. Mining of Massive Datasets, Cambridge University Press 2010

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction
M301205	Cyber Crime Investigation	3-0-0-1	2021
Prerequisites:			
		re, Computer Organisation, OS a	and Networking
Basic understar	nding of Programming Skills		
Course Objectives	:		
1. The main o	bjective of the course is to in	troduce the students to bring a	wareness in crimes
0	the attackers.		
	ling Laws relating to cyber rin	-	
		idence investigations and explain	ain the differences
between la	w enforcement agencies and	corporate investigations.	
	-	se, the students would be able t	
	e .	e to perform cyber rime investiga	
		pon OS, networks and network o	devices.
CO3: Utilize	e various forensic tools to coll	ect digital evidence.	
Program Learning			
PLO 1Deve	lop strong fundamental disci	olinary knowledge	
PLO 2Demo	onstrate research skills that a	are of experimental, computation	onal, or theoretical
nature			
PLO 3 Apply	y scholarship to conduct inde	pendent and innovative researcl	h
		ariety of formats (oral, written)	and to expert and
non-expert			
PLO 5 Pract	tice ethical standards of profe	ssional conduct and research	

M3010205 CYBER CRIME INVESTIGATION

PLO 6Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mappi	ng of course of	outcomes with	n program le	earning outcor	nes:					
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6				
CO1	3	2	2	2	2					
CO2	3	3	3	2	3	2				
CO3	3	2	3	2	3	1				
	_	nt (Low) 2: Mc	-		stantial (High)		l			
Syllabus:										
Modu				Content						
1	Crimes, Ty Digital Evid Pre-invest	Overview of Cyber Crimes: Definition, Tools and Techniques used to commit Cyber Crimes, Types of Cyber Crimes. Digital Evidence - Source and Nature of Digital Evidence. Digital Evidence in the Courtroom Pre-investigation Assessment: Preliminary review of the Scene of Offence, Pre- investigation Technical Assessment, Issuance of Prevention Notice, Containment of								
2	Digital Ev Investigati Imaging a External A OS Forens Memory	idence Exam on, Collectior Ind Logical F gencies / Com ics: Registry A	n of Digital ile Collectic panies. nalysis, Time latile Data	Evidence, Phy on, Chain of estamp Analys Collection, N	vsical Drives I Custody, Gatl is, Event View	ng Procedure maging, Netw hering Informa rer Analysis. p, Volatility I	ork Drives			
3	using Wire Email Inve Virtual Ma	Network Forensics: Understanding Network Protocols with Wireshark, Packet Capturing using Wireshark, Packet Filtering, Extracting of Data from PCAP file, Analysis of Logs. Email Investigation. Virtual Machine Forensics: Importance of Virtual Machines in Forensic Analysis, Imaging of a Virtual Machine, Identification and Extraction of supporting VM files in the host								
4	Cloud Fore Preservation Forensics. IoT Forens Investigation Social Medicional	 System. Cloud Forensics: Cloud Storage Forensic Framework, Evidence Source Identification and Preservation in the Cloud Storage, Cloud Storage Forensic Analysis, Issues in Cloud Forensics. Dropbox and Google Drive analysis. IoT Forensics: Challenges and Case Studies Investigations of Darknet, Illegal Usage of Crypto Currencies, Investigation of Crimes in Social Media and Online Financial Transactions, Machine Learning Applications in Cyber Crime Detection and Investigation. 								
Text Bo	ooks:									
1.			=	pher Steuart,	"Guide to C	omputer Fore	ensics and			
2.	Karanam Saty	s", Sixth Editic /anarayana, " sia Law House	Step by Ste		Crimes Invest	igation, Chall	enges and			
3.		arshall, "Digita			nce in Crimin	al Investigatio	on", John -			
4.	Dr. Rukmani			tion to Foren	sic Science in	Criminal Inve	estigation"			
5.	=	-	-	rensics: An I Edition (2019)	ncident-Based	Approach to	o Forensi			
Refere	nces:									
1.		•	•	•	•	ryn C. Seigfr d Edition (201	-			

2. Computer Forensics: Investigating Network Intrusions and Cyber Crime (EC Council Press

Series: Computer Forensics)

3. Cyber Forensics: Understanding Information Security Investigations (Springer's Forensic Laboratory Science Series) by Jennifer Bayuk

M3022102 CYBER SECURITY AND DIGITAL FORENSICS

Course	Code	Cour	se Name		edit Split /Seminar/Proj	ject	Year of	f Introduct	tion
M302	102	Security	Cyber / and Digital rensics	3-0-0-0			2021		
Prerequis	ites: N	il							
	Course Objectives:								
	 2. Understand various techniques of cyber attacks and defences 3. Perform digital forensic investigations 								
		-	-				- - - -		
			•		he students w				
			•	-	s and cyber see	•			etwork
	vices et		gital lorens		on OS, men	iory, net	LWOIKS		etwork
			s cyher securi	ity and foren	sic tools to und	erstand	cyber a	attacks	
			evidence.	ity and foreit.		crotaria	cyber c		
Program I									
	-			ntal disciplina	ary knowledge				
		-	-	=	of experimenta	l, comp	utation	al, or theo	oretical
na	ture								
PL	O 3 Appl	y schola	rship to cond	uct independ	ent and innova	itive rese	earch		
PL	O 4Shov	<i>w</i> comm	unication skil	ls in a variet	y of formats (oral, wri	tten) aı	nd to expe	ert and
		t audien							
				-	nal conduct an				
	•	-			collaborative				
	-		llis, and write	articles for s	cholarly journa	ais it it is	taught	с бу тасинту	' in the
	partmei		mes with pro	gram learnin	a outcomes:				
		LO1	PLO2	PLO3	PLO4	PLO5		PLO6	
				2		. 200			-
CO		3	3						_
CO		3	3	3		3			_
CO		3	3	3	2. C. J	3			
	on: 1: 2	iigrit (LOV	w) 2: Modera	ite (iviealum)	3: Substantia	ii (Hign)))		
Syllabus:									
Module				Co	ontent				
				•	ools and Tech	•			-
		Keylogg	•	ywares, Vii		'orms,	Trojan		
1			• • •		Attacks, SQL	-			
		-	-		g, Cyberstalking		Card I	Frauds, Fir	nancial
		-			e attacks and o		I	Ouline E	
					rimes in Soci				
2					orks, Security i			•	
			ainst various a		, Security is	ssues I		ELWUIKS, 30	ecurity
3					igital Evidence		ion of	Digital Fui	dence
	-				Imaging and			-	
	p rrysica		muging, Net	WOIN DINES	muging and	Logical I			

	Custody, Gathering Information from External Agencies / Companies,
	OS Forensics: Registry Analysis, Timestamp Analysis, Event Viewer Analysis.
	Memory Forensics: Volatile Data Collection, Memory Dump, Volatility Framework and Plugins, Bulk Extractor and YARA tools.
	Network Forensics, Understanding Network Protocols with Wireshark, Packet Capturing using Wireshark, Packet Filtering, Extracting of Data from PCAP file, Analysis of
4	Logs, Email Investigation. Virtual Machine Forensics: Importance of Virtual Machines in Forensic Analysis, Imaging of a Virtual Machine, Identification and extraction of supporting VM files in the hos system.
Text B	ooks:
1.	Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and Investigations", Sixth Edition (2020)
2.	Karanam Satyanarayana, "Step by Step in Cyber Crimes Investigation, Challenges and Solutions", Asia Law House; 1st Edition (2020).
3.	
	Nina Godbole, Sunit Belapure, Cyber Security: Understanding Cyber Crimes, Computer For ensics and Legal Perspectives, 2011,
4.	
	John Sammons, The Basics of Digital Forensics: The Primer for Getting Started in Digital For ensics Elsevier, 2014.
5.	
	P.W. Singer, Allan Friedman, Cyber security and Cyber war: What Everyone Needs to Know, Oxford University Press, 2014,
6.	Angus M. Marshall, "Digital Forensics: Digital Evidence in Criminal Investigation", John - Wiley and Sons, 2008.
7.	Dr. Rukmani Krishnamurthy, "Introduction to Forensic Science in Criminal Investigation" Selective & Scientific Books (2015)
8.	Niranjan Reddy, "Practical Cyber Forensics: An Incident-Based Approach to Forensic Investigations", New York, Apress, 1st Edition (2019)
Refere	ences:
1.	Thomas J. Holt (Author), Adam M. Bossler (Author), Kathryn C. Seigfried Spellar "Cybercrime and Digital Forensics: An Introduction", Routledge, 2nd Edition (2017)
2.	Computer Forensics: Investigating Network Intrusions and Cyber Crime (EC Council Press Series: Computer Forensics)
3.	Cyber Forensics: Understanding Information Security Investigations (Springer's Forensic Laboratory Science Series) by Jennifer Bayuk

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction			
M301201	Data and Intelligence	3-1-0-0	2021			
Prerequisites: Nil						
Course Objectives:						
1. To impart skills needed to identify and understand data problems						
2. To equip with analytical thinking on problems solvable with data intelligence						

M3010201 DATA & INTELLIGENCE

3. To impart solution design capability with data intelligence

Course Outcomes: After completion of this course, the students would be able to:

CO1: Understand and develop techniques in data intelligence

CO2: Problem identification and analysis skills on data intelligence problems

CO3: Solution design capability with data intelligence

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		2
CO2	2	3	3	2		2
CO3	2	3	3	2		2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

-						
Module	Content					
1	Data Intelligence and Decision Making, Collaborative Intelligence - Humans and AI. Data Architecture, Data Profiling and Storage, Data Quality and Integration, ETL process					
2	Data Analytics Thinking, Exploratory Analysis, Multidimensional Analysis, OLAP, Data Visualization, Data Modelling, Overfitting and Underfitting					
3	Decision Analytic Thinking - Applications of Clustering, Classification and Association Mining. Big Data Environments and Knowledge Extraction. Enterprise Data Management - Collibra case study.					
4	Realistic AI and Digital Transformation. Intelligence in CRM - Telenor case study, Healthcare Intelligence - VideaHealth Case study, Retail Intelligence - Vispera case study, HR Intelligence - Recruit Japana case study, Manufacturing Intelligence - Dow Chemicals case study.					
 Lab/Assignment: A case study presentation and discussion (by a group of three) Text Books: Provost, F. and Fawcett, T., Data Science for Business, Shroff Publishers andDistributors Pvt. Ltd, 2014 Daniel T. Larose, Chantal D. Larose, Data Mining and Predictive Analytics, John Wiley and Sons, 2016. HBR Case Studies 						
3. HBR C	ase Studies					

References:

1. Erl, T., Khattak, W. and Buhler, P., Big Data Fundamentals: Concepts, Drivers and Techniques, Pearson Education India, July 2016

2. Seth Stephens-Davidowitz, Everybody Lies: Big Data, New Data, and What the Internet Can Tell Us About Who We Really Are, HarperLuxe, 2017.

		[M30202	17 DATA A	NALYTICS	1			
C	ourse ode	Course Name			ninar/Project	Yea Introdu	ction		
M3(02217	Data Analytic	cs	3-0 -	-0-1	202	1		
Prerequisites: Basic knowledge in Machine learning, statistics and Python									
	e Object								
	 To provide students with a good understanding of the concepts of Data Analytics described in the syllabus. 								
2. To	o help th	e students develop	the ability	to solve pro	oblems using the	learned conce	epts.		
3. To	o connec	t the concepts to th	ie domain	both within	and without dat	ta analytics	such as		
		earning and pattern							
		mes: After complet							
		and the Data analyt		•					
	•	and evaluate critica		-	-				
	0	nd demonstrateDat	a analytic	s through te	am research proj	ect, and proje	ct report		
•	ntation.								
-		ning Outcomes:							
	-	strong fundamenta trate research skills	-	-	-	al or theoret	ical		
natur		tiate research skins	ה נוומנ מופ נ	or experimer	ital, computation		llai		
		holarship to condu	rt indenen	dent and in	novative research	h			
		mmunication skills					nd non-		
	t audie				(,				
PLO5	Practice	ethical standards o	f professio	onal conduct	and research;				
PLO6	Acquire	professional skills s	uch as col	laborative sl	kills, ability to wri	te grants,			
entre	preneuri	al skills, and write a	rticles for	scholarly jo	urnals if it is taug	ht by faculty i	n the		
depar	rtment.								
Марр	ping of co	ourse out comes wi	th progra	m learning o	out comes:	-	_		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6			
CO1	3	3	2	2	1	2			
CO2	3	3	3	2	1	2			
CO3	2	1	1	2	3	3			
Correl	lation: 1	· Clight (Low) 2. Ma	dorato /M	adium) 2. C	ubstantial (Lligh)				
-		: Slight (Low) 2: Mo	uerate (IVI	euluiii) 3: Sl	insraiirigi (HißU))				
Syllab				Contont					
Mod		nro processing an		Content	ac of data and a	lata madala	active and		
		pre-processing an							
1	-	ve models, explana els; missing data,	•	•					
Ŧ		es, conversion of (-				-		
				-	-				
		retaining and replacing missing value information, sparse variables, Dimensionality							

M3020217 DATA ANALYTICS

Reduction and PCAClustering : Distance Measures, Clustering, Hierarchical clustering, k-means
clustering, Kohonen networks, DBSCAN, Measuring cluster goodness, Association2rules, Affinity and Market Basket analysis, support and Confidence, Apriori and FP-

		growth, Pattern-sequential, frequent sequence mining							
		Regression and Classification: Linear regression, the least square estimates, Inference							
		in regression, Multiple Regression, Inference in multiple regression, Logistic regression,							
		regression with categorical predictors, Supervised learning methods, Classification,							
		KNN algorithm, choosing k, Decision trees, Classification and regression trees, Decision							
3		Trees, SVM, Neural network, Activation functions, Gradient descent methods,							
		,Maximum Likelihood estimation, Naive Bayes Algorithm, Model evaluation							
		techniques-Application							
		Applications on Data Science: Sentiment Analysis, recommendation systems, social							
4		network analysis, Data Analytics using NumPy, Data Manipulation and Visualization							
		with Pandas and Tableau. R programming for Data Science, Deep Learning based on							
		medical data analysis/Business data Analysis							
Те	extBo	oks:							
	1. J	oao Moreira, Andre De Carvalho, Tomas Horvath " A general Introduction to Data							
	A	analytics" Wiley, 2019							
	2. la	an H. Witten, Eibe Frank, Mark A. Hall , Data Mining: Practical Machine Learning Tools							
	а	nd Techniques, Third Edition (The Morgan Kaufmann Series in Data Management							
	S	ystems), Morgan Kaufmann; 3 edition (January 20, 2011)							
	3. /	Abhishek Kumar Pandey, Pramod Singh Rathore, S Balamurugan, A Practical Approach							
	f	or Machine Learning and Deep Learning Algorithms, BPB Publications, 2019							
	4. E	By Hadley Wickham, Garrett Grolemund, R for Data ScienceImport, Tidy, Transform							
	٧	/isualize, and Model Data, O'reilly, 2016							
Ref	eren	ces:							
	1. A	Advanced Analytics with R and TableauBy Jen Stirrup, Ruben Oliva Ramos · 2017							
	2. C	Data Preparation for Data Mining by Dorian Pyle, Morgan Kaufmann Publishers, Inc. 1999							

 Data Preparation for Data Mining by Dorian Pyle, Morgan Kaufmann Publishers, Inc. 1999 (ebook)

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/ Project	Year of Introduction				
M301212	Data Mining and Big Data	3-0-0-1	2021				
Prerequisites:	Nil						
 To impart s technologies To equip the data mining 	data mining and big data technologies						
CO1: Un CO2 : Pr applicati	es: After completion of this coun derstand and develop technique oblem identification and anal ons ution design capability with data	es in data mining and big o ysis skills on data mini	data management ng and big data				

M3010212 DATA MINING AND BIG DATA

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	1	2	2
CO2	2	3	3	1	1	3
CO3	2	2	3	2	2	2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

bus:

Module	Content
1	Introduction to data warehousing - ETL process,OLAP, Data mining - Market Basket Analysis, Association rue mining: frequent pattern mining, FP Tree, Apriori algorithm, Decision Trees - Classification and Regression Trees - Tree induction. Recommender Systems - Collaborative Filtering, Content Based Recommendation, Knowledge Based Recommendation.
2	Visualisation of social graphs, Social network exploration/ processing: graph classification, clustering of social-network graphs, centrality measures, community detection and mining, outlier detection. Information diffusion in graphs: Cascading behaviour, spreading, epidemics, heterogeneous social network mining, influence maximisation.
3	Introduction to Big Data Technology - Hadoop, HDFS, MapReduce. Apache Spark -Spark Core, High Level Architecture, Spark Context, RDD, Lazy Operation, Caching methods, Spark SQL.
4	Mining data stream, Examples of data stream applications, Sampling in data streams, Filtering streams, Counting distinct elements in stream, Spark ML and Applications.

Text Books:

- 1. Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second Edition), Morgan Kaufmann, 2005
- 2. Data Analytics with Spark Using Python, By Jeffrey Aven, Addison Weley Data & Analytics series, 2018
- **3.** Analysing Social Networks, Steven Borgatti, Martin Everett and Jeffrey Johnson, Sage, 2013

References:

- 1. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press, 2011
- 2. Understanding Social Networks: Theories, Concepts and Findings, Charles Kadushin, Oxford University Press, 2011

C	ourse Co		2020103 Course l		TURES AND AL Credit S		Year of		
•					Lecture/Lab/S	-	Introduction		
					Project	t			
M2	202103	Dat	a Structures a	and Algorithms	3-1-0-	0	2021		
	erequisit								
Co	urse Obj	jectives:							
Ð			•		and algorithms				
				-	orting techniques				
•			-		eues, lists, trees a				
•					y step approach i	n solving	problems with		
^		•	mental data st				<u>. +</u>		
-0			•		, the students wo s its time and spa				
		mptotic no		nin and expres	s its time and spa	te comple	XILLES III		
		•		tions and annlie	ations of abstract	t and conc	rete data		
		z. summa	ize the operation						
			e concept of r	ecursion and he	ap in problem so	lving.			
			•		ulation using non	-	a structures like		
		es and grap	•		U				
	CO	5: Explainva	arioustechniqu	uesforsearching	, sorting, hashing	and patte	ernmatching		
۲¢	ogram Le	earning Ou	tcomes:						
	PLC) 1 Develop	o strong funda	mental discipli	ary knowledge				
	PLC	2 Demons	strate researcl	n skills that are	of experimental,	computati	ional, or		
	the	oretical na	ture						
	PLC	3 Apply so	cholarship to c	conduct indepe	ndent and innova	tive resea	rch		
				skills in a varie	ty of formats (ora	ıl, written)	and to expert		
		-	rt audiences;						
				•	onal conduct and				
		-			llaborative skills,	-	-		
		-		rite articles for	scholarly journal	s if it is tau	ught by faculty		
		he departn							
VIa 	apping o	1		program learn	-		DI OC		
	CO1	PLO1	PLO2	PLO3	PLO4 PLC	<i>)</i> 5	PLO6		
	01	5	2	3	2				
	CO2	3	3	3	2				
	CO3	2	3	_	2				
•		n: 1: Slight	(Low) 2: Mod	erate (Medium	3: Substantial (High))			
5.71	llabus:								
y	odule	Content							
-	1								
-		Introduction to ADT and Algorithms: Principles of DSA, ADT,							
Mo				,algorithmnotic	•	,			
Mo		computat	tionalproblem	,algorithmnotic	•		icnotations -		
Mo		computat Analysisof	tionalproblem ^f algorithms – t	,algorithmnotic imecomplexity	on,	,asymptot			

M2020102 DATA STRUCTURES AND ALCORTUMS

	Overview of algorithm design techniques –incrementaldesign, Divide and
	conquer technique, Greedy technique, Dynamic Programming.
	Recursion:
	Closedform, recursive form, problemsolving, Fibonacciseries, Towersof Hanoi,
	Writing recurrence relation for a given problem and solution using substitution
	technique.
2	Implementation Lists and Linked List: Lists ADT, Linked list - basic operations,
	doublylinked list,
	Introduction to stack, basic operations, Applications of stack data structure –
	parenthesis matching, Conversion from Infix notation to Polish and reverse
	Polish notations, Evaluation of expression using stack
	Introduction to queues - basic operations. Circular queues, Priority Queues.
	Heap: Introduction, max heap, minheap, representation, applications
	Complexity of basic operations on LL, stack, queue and heap data structures
3	Non-linear data structures: Complexities of basic operations
	Binarytree,traversalinatree,binary search tree, notion of height balancedtrees,
	AVL trees, B-tree, red black tree.
	Graph: Weighted graph, spanning tree, Kruskal'salgorithm, Prim'salgorithm,
	graph traversal techniques – DFSandBFS, shortest path problem -
	Dijkstra'salgorithm
4	Searchingalgorithms:LinearandBinary search.
	Sorting techniques – bubble sort, selection sort, insertion sort, merges sort,
	heap sort, quick sort.
	Hashing:openaddresshashing,doublehashing,chaining.Patternmatchingandstring/
	text
	Dynamic Programming techniques – Optimal substructure property, Overlapping
	sub-problems property, Memorization; Matrix chain Multiplication Problem,
	Longest Common Subsequence Problem
Lab Exe	rcises:
Ν	Nodule 1:
A	Array-based stack implementation, plotting complexity values to show the
а	symptotic behavior
Ν	Aodule 2:
l	mplementation of linked list, stack, queue, heap
Ν	Aodule 3:
C	Determining shortest path from a graph
Ν	Лodule 4:
l	mplementing sorting and searching algorithms, Implementation of hashing
O+	her interesting problems (from online platforms like https://leetcode.com/) where
	ictures need to be used in an intelligent way.
	actives need to be used in an intelligent way.
Text Boo	oks:
1. T	.H. Cormen Introduction to algorithms, MIT Press. 2009
	Bradley N. Miller, David L. Ranum Problem Solving with Algorithms and Data
	tructures Using Python, Franklin, Beedle & Associates, 2011
Poforon	

References:

1. A.D Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Pearson

education Asia, 1983.

- 2. Y. Langsam, M. J. Augenstein and A. M. Tenenbaum, Data Structures using C, PearsonEducation Asia, 2004
- **3.** Adam Drozdek, Data Structures and Algorithms in Java, Published by Brooks/Cole, 2nd edition2002.

Course Code	2	Course Name		Credit Lecture/Lal Pro	o/Seminar/	Year of Introduction 2021	
A302301 Database S		Database Secu	urity	3-0-	-0-1		
rerequisites	: Nil				I		
ourse Objec							
		ypes of databa					
		ty aspects of da	atabases				
To perfor			<u> </u>				
		er completion c					
	Discrimina	ate betweer nd designs Enti			es of Databa	ises	
	-	e concepts rela			1		
		fferential attrib				l Data & Semi-	
	Structur						
				c			
CO5: /	Apply prin	ciples of Datab	ase securit	y for efficient	Data auditing	ç.	
CO5: /	Apply prin	ciples of Datab	ase securit	y for efficient	Data auditing	ç.	
				y for efficient	Data auditing	ļ. 	
rogram Leai	ming Out	comes:				ļ. 	
rogram Leai PLO 1	rning Outo		ental discip	linary knowle	dge		
rogram Leai PLO 1 PLO 2	rning Outo	comes: strong fundamo rate research s	ental discip	linary knowle	dge		
rogram Lear PLO 1 PLO 2 theore PLO 3	Develop s Demonst etical natu Apply sch	comes: strong fundame rate research s ure nolarship to cor	ental discip kills that ar nduct indep	linary knowle e of experime endent and ir	dge intal, computa	ational, or earch	
rogram Lear PLO 1 PLO 2 theore PLO 3 PLO 4	Develop s Demonst Demonst etical natu Apply sch Show cor	comes: strong fundame rate research s ure nolarship to cor mmunication sk	ental discip kills that ar nduct indep	linary knowle e of experime endent and ir	dge intal, computa	ational, or	
Program Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne	rning Outo Develop s Demonst etical natu Apply sch Show cor on-expert	comes: strong fundame rate research s ure nolarship to cor mmunication sk audiences;	ental discip kills that ar nduct indep kills in a var	linary knowle e of experime endent and ir iety of format	dge intal, computa inovative rese s (oral, writte	ational, or earch n) and to expert	
PLO 1 PLO 1 PLO 2 theore PLO 3 PLO 4 and no PLO 5	Thing Out Develop Demonst etical natu Apply sch Show cor on-expert Practice e	comes: strong fundame rate research s ure nolarship to cor mmunication sk audiences; ethical standare	ental discip kills that ar nduct indep kills in a var ds of profes	linary knowled e of experime endent and ir iety of format	dge intal, computa inovative rese s (oral, writte ct and researc	ational, or earch n) and to expert h;	
rogram Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne PLO 5 PLO 6	Thing Out Develop s Demonst etical natu Apply sch Show cor on-expert Practice e Acquire p	comes: strong fundame rate research s ure nolarship to cor nmunication sk audiences; ethical standare professional ski	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c	linary knowled e of experime endent and ir iety of format ssional conducts collaborative s	dge intal, computa inovative rese s (oral, writte it and researc kills, ability to	ational, or earch n) and to expert h; o write grants,	
rogram Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne PLO 5 PLO 6 entrep	Thing Out Develops Demonst etical natu Apply sch Show cor on-expert Practice e Acquire p oreneurial	comes: strong fundame rate research s ure nolarship to cor mmunication sk audiences; ethical standare professional ski I skills, and writ	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c	linary knowled e of experime endent and ir iety of format ssional conducts collaborative s	dge intal, computa inovative rese s (oral, writte it and researc kills, ability to	ational, or earch n) and to expert h;	
Program Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne PLO 5 PLO 6 entrep in the	Develop s Demonst etical natu Apply sch Show cor on-expert Practice e Acquire p oreneurial departme	comes: strong fundame rate research s ure nolarship to cor mmunication sk audiences; ethical standare professional ski I skills, and writ	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c te articles fo	linary knowled e of experime endent and ir iety of format ssional conduc collaborative s or scholarly jo	dge intal, computa inovative rese s (oral, writte it and researc kills, ability to urnals if it is t	ational, or earch n) and to expert h; o write grants,	
Program Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne PLO 5 PLO 6 entrep in the	Develop s Demonst etical natu Apply sch Show cor on-expert Practice e Acquire p oreneurial departme	comes: strong fundame rate research s ure nolarship to cor nmunication sk audiences; ethical standare professional ski l skills, and writ	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c te articles fo	linary knowled e of experime endent and ir iety of format ssional conduc collaborative s or scholarly jo	dge intal, computa inovative rese s (oral, writte it and researc kills, ability to urnals if it is t	ational, or earch n) and to expert h; o write grants,	
Program Lear PLO 1 PLO 2 theore PLO 3 PLO 4 and ne PLO 5 PLO 6 entrep in the	ning Outo Develop s Demonst etical natu Apply sch Show cor on-expert Practice e Acquire p oreneurial departme ourse out	comes: strong fundame rate research s ure nolarship to cor nmunication sk audiences; ethical standare professional ski l skills, and writ ent. comes with pr	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c te articles fo ogram lear	linary knowled e of experime endent and ir iety of format ssional conduc collaborative s or scholarly jo ning outcome	dge ental, computa novative rese s (oral, writte et and researc kills, ability to urnals if it is t	ational, or earch n) and to expert h; o write grants, aught by faculty	
Program Lean PLO 1 PLO 2 theore PLO 3 PLO 4 and no PLO 5 PLO 6 entrep in the Mapping of c	ming Outo Develop s Demonst etical natu Apply sch Show cor on-expert Practice of Acquire p oreneurial departme ourse out	comes: strong fundame rate research s ure nolarship to cor mmunication sk audiences; ethical standard professional ski l skills, and write ent. comes with pr	ental discip kills that ar nduct indep kills in a var ds of profes lls such as c te articles for ogram lear PLO3	linary knowled e of experime endent and ir iety of format sollaborative s or scholarly jo ning outcome PLO4	dge ental, computa novative rese s (oral, writte et and researc kills, ability to urnals if it is t	ational, or earch n) and to expert h; o write grants, aught by faculty	

M3022301 DATABASE SECURITY

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:	
Module	Content
1	Different Types of Databases, Entity Relationship Models, Relational Models, Relational Algebra, Calculus, ACIDProperties, Relational Databases, Concurr encyControl, Processof Database Design, Dependencies and Normalization for Relational Databases, Object-oriented/Object-Relational Models, Threats to the Database, Principles of Database Security, Levels of Database Security, Database Security Issues,
2	IntroductiontoSQL,SQLFeatures,SQLOperators,SQLDatatypes,SQLParsing,Typesof SQLCommands,AdvancedStudyofStructuredQueryLanguage,QueryingDatafromt hedatabase,CorrelatedSub- queries,Joins,HierarchicalQueries,BindVariables,Cursors,Functions,StoredProced ures, MySQL,BasicsofNewSQLDatabases, SQLInjectionandMitigation,
3	StructuredData,UnstructuredData,Semi-StructuredData,LimitationsofTraditional RDBMSs, SQL and Structured Data, SQL and Semi-Structured Data,SQLandUnstructuredData,TheEmergenceofNoSQL,NoSQLDatabasefeatures ,TypesofNoSQLDatabases,SearchEngineDatabases,Basicsof MongoDBandNeo4j, DataAuditing,StatisticalDatabaseSecurity,Semantic Integrity Control, Privilege Analysis, Virtual Private Database(VPD),DataRedaction,SensitiveDataProtection,
4	AuthenticationandAuthorizationinDBMS,PropertiesandBasicPrinciplesofAccessControlMechanisms,ViewsforAccessControl, Classical DatabaseAccess Control: Discretionary Access Control,Role-BasedAccess Control and Mandatory Access Control;Access Control inOpenEnvironmentssuchasAttributeBasedEncryptionandIdentityBasedEncryption,Access Control in SQL,NetworkDataEncryption,StrongAuthentication,PrivateDataAggregation,SearchinEncryptedData:SearchableEncryptionOverview,SelectedSchemesonSearchableEncryptionEncryptionSchemesonSearchableEncryption

Text Books:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, Database System Concepts, 6th Ed., Tata McGraw Hill, 2011.
- 2. Andreas Meier, Michael Kaufmann, SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big Data Management, Springer, 2019
- 3. Guy Harrison, Next Generation Databases: NoSQL, NewSQL, and Big Data, Apress
- 4. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 6th Ed., Pearson Education, 2011.
- 5. Ron Ben Vatan, Implementing Database Security & Auditing

References:

- 1. C. J. Date, A.Kannan, S.Swamynathan, An Introduction to Database Systems, 8th Ed.n, Pearson Education, 2006
- 2. Elmasri, Ramez; Navathe, Shamkant B, Fundamentals of Database Systems, Pearson, 2000
- 3. G.K. Gupta, Database Management Systems, Tata McGraw Hill, 2011
- 4. Hellerstein, Joseph, Michael Stonebraker, Readings in Database Systems (The Red Book),

5. 4th ed., MIT Press, 2005

- 6. Jan L Harrington, Object Oriented Database Design Clearly Explained, Harcourt, 2000
- 7. Raghu Ramakrishnan, Database Management Systems, 4th Ed, McGraw-Hill, 2015
- 8. Raghu, and Johannes Gehrke, Database Management Systems, 3rd ed. McGraw-Hill, 2002
- 9. Stefano Ceri, Giuseppe Pelagatti, Distributed Databases: Principles and Systems, Universities Press, 2000
- **10.** Vijay Atluri, Pierangela Samarati, Security of Data and Transaction.

M2021202 DATABASE SYSTEMS

Course	e Code		Course Name		Credit Spl		Year of	
				Lectur	e/Lab/Semina	ar/Project	Introduction	
M20	M202202 Database Systems		s	3-0-0-0		2021		
Prerequ	Prerequisites: Nil							
Course	Course Objectives:							
	of database systems described in the syllabus.							
2. Toh	To help the students develop the ability to solve problems using the learned concepts.							
Course	Outcome	s: After	completion of t	his course, th	e students wou	ld be able to:		
		the fo	undations of mo	dern databas	e systems theor	y, problem and	d state of the art	
solution								
	-		-	-	-	-	hms and systems.	
	-		strate a working	database sys	tem through te	am research pi	roject, and project	
	presentat							
-	n Learning	-						
	•	-	ndamental discip	•	-	tional anthaa	national matures	
			earch skills that a to conduct inde	•			relical nature.	
		•					t and non-expert	
audienc		numea						
		hical st	andards of profe	ssional condu	ict and research	۱.		
PLO 6 A	cquire pro	ofessio	nal skills such as	collaborative	skills, ability to	write grants, e		
			for scholarly jour			in the departm	ent.	
wappin		se out	comes with prog				DLOC	
CO1	PLO1 3		PLO2 2	PLO3	PLO4	PLO5	PLO6	
	5		Z	5	2			
CO2	3		3	3	2			
CO3	2		3	3	2			
	(Correlati	on: 1:	Slight (Low) 2: N	Aoderate (Me	dium) 3: Sub	stantial (High))		
Syllabus	5:							
Module	Con	tent						
1	Intro	oductio	n to Database	Managemer	nt Systems: Al	ostraction, Inc	lependence, ACID	
1 Introduction to Database Management Systems: Abstraction, Independer Properties, DBMS Architecture, Comparison with File Server Model.				. ,				
				•			eys, Data Integrity	
			aints, Normalizat	-		-	2 /	
2	Intro	oductio	n to SQL: SQL Fe	atures, SQL (Operators, SQL	data types, SQ	L Parsing, Types of	
	SQL	Comm	ands, Advanced	Study of Strue	ctured			
	Que	ry Lan	guage, Querying	g Data from	the database	, Correlated S	Sub-queries, Joins,	

	Hierarchical Queries, Cursors, Functions, Stored Procedures.
3	Distributed Databases: Architectures, Replication and Fragmentation, Query Processing in Distributed Databases, Commit Protocols, Concurrency control, Deadlock Handling and Recovery in Distributed Database Management Systems.
4	Overview, and History of NoSQL. The Emergence of NoSQL, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, Challenges NoSQL approach, Key-Value and Document Data Models, Column-Family Stores, Aggregate- Oriented Databases, Replication and sharding
Text Bo	poks:
	1. Database Management System, MonelliAyyavaraiah, ArepalliGopi, Horizon

Books,2017

2. SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures for Big Data Management, Andreas Meier, Michael Kaufmann,

Springer,2019 3. Abraham Silberschatz; Henry F Korth, Database System Concepts, McGraw Hill Publication, 2002

4. Hellerstein, Joseph, and Michael Stonebraker. Readings in Database Systems (The Red Book). 4th ed. MIT Press, 2005.

5. Raghu, and Johannes Gehrke. Database Management Systems. 3rd ed. McGraw-Hill, 2002.

References:

- 1. Stefano Ceri; Giuseppe Pelagatti, Distributed Databases: Principles and Systems, Universities Press, 2000
- 2. Jan L Harrington, Object Oriented Database Design Clearly Explained, Harcourt, 2000
- 3. Elmasri, Ramez; Navathe, Shamkant B, Fundamentals of Database Systems, Pearson, 2000

M3021204 DEEP LEARNING AND REINFORCEMENT LEARNING

Reinforcement Learning	Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction	
 Objectives: provide students with a good understanding of the concepts of deep learning and forcement learning described in the syllabus. help the students develop the ability to solve problems using the learned concepts. connect the concepts to other domain both within and without mathematics such as tern recognition. Outcomes: After completion of this course, the students would be able to: CO1: Understand the foundations of modern deep learning and reinforcement learning theory, problem and state of the art solutions. CO2: Analyze and evaluate critically the building and integration of deep learning and reinforcement learning algorithms and systems. CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation. 	M302204		3-0-0-0	2021	
 brovide students with a good understanding of the concepts of deep learning and forcement learning described in the syllabus. belp the students develop the ability to solve problems using the learned concepts. connect the concepts to other domain both within and without mathematics such as the recognition. Outcomes: After completion of this course, the students would be able to: CO1: Understand the foundations of modern deep learning and reinforcement learning theory, problem and state of the art solutions. CO2: Analyze and evaluate critically the building and integration of deep learning and reinforcement learning algorithms and systems. CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation. 	Prerequisites: N	vil			
 CO1: Understand the foundations of modern deep learning and reinforcement learning theory, problem and state of the art solutions. CO2: Analyze and evaluate critically the building and integration of deep learning and reinforcement learning algorithms and systems. CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation. 	reinforceme 2. To help the s 3. To connect	nt learning described in the students develop the ability the concepts to other don	e syllabus. y to solve problems using the learne	ed concepts.	
reinforcement learning algorithms and systems. CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation.	CO1: Ur	nderstand the foundation	s of modern deep learning and		
n Learning Outcomes:	reinforce CO3: De	ement learning algorithms a sign and demonstrate a w	and systems. vorking deep learning and reinfor	cement learning	
	system t	hrough team research proje			

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

1 De Op Ma Ara 2 Au	eep Networks: Deep FeedForward Networks, Regularization in Deep Learning, ptimization for Training Deep Models. Convolutional Neural Networks, Sequence odeling - Recurrent and Recursive Nets. Concept of Attention and Transformer chitectures. Generative Adversarial Networks.
2 Au	otimization for Training Deep Models. Convolutional Neural Networks, Sequence odeling - Recurrent and Recursive Nets. Concept of Attention and Transformer chitectures. Generative Adversarial Networks.
	Itoencoders- Transfer learning-Few Shot Learning, Zero-shot Learning. Practical ethodology. Applications of Deep Learning in domains involving natural language xt/speech, Images and videos.
Pro Eva lea	troduction to Reinforcement Learning, Markov Processes Markov Reward ocesses (MRPs) Markov Decision Processes (MDPs), MDP Policies, Policy aluation, Policy Improvement, Policy Iteration, Value operators. Model-free arning - Q-learning, SARSA, Scaling up: RL with function approximation, RL with nction approximation.
Lea So dif	itation learning in large spaces, Policy search, Exploration/Exploitation, Meta- arning, Batch Reinforcement Learning, Bandit problems and online learning. lution methods: dynamic programming, Monte Carlo learning, Temporal fference learning, Eligibility traces, Value function approximation, Models and anning.

4. Ian Goodfellow, Y. Bengio and A. Courville, "Deep Learning", MIT Press, 2016.

References:

- 1. Kevin P. Murphy. 2012. *Machine Learning: A Probabilistic Perspective*. The MIT Press.
- 2. Martin L. Puterman. 1994. *Markov Decision Processes: Discrete Stochastic Dynamic Programming* (1st. ed.). John Wiley & Sons, Inc., USA.
- 3. Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015.
- 4. Li Deng and Dong Yu, "Deep Learning: Methods and Applications", 2013.

M3021211 DIGITAL IMAGE AND VIDEO PROCESSING

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Pr oject	Year of Introduction	
M302211 Digital Image and Video Processing		3-0-0-1	2021	
Prerequisites				
describe 2. Tohelpth 3. Toconne	destudentswithagoodunders d in the syllabus. nestudentsdeveloptheability	rtosolveproblemsusingthelear inbothwithinandwithout ima	•	
CO1: Understa CO2: Analyzea CO3:Designand	ndthe digital image processi ndevaluatecriticallythebuildi ddemonstrate digital image	ourse, thestudents would be abl ing techniques and state of the ing and integration of digital in adproject report, presentation.	artsolutions. nage processing.	
PLO 2 Demonstr PLO 3 Apply sch PLO 4 Show con audiences. PLO 5 Practice e PLO 6 Acquire	strong fundamental disciplinary rate research skills that are of e olarship to conduct independe nmunication skills in a variety o ethical standards of professional professional skills such as co	experimental, computational, or ent and innovative research. of formats (oral, written) and to	expert and non-expert rite grants,	
Mapping	gofcourseoutcomeswithpro	gramlearningoutcomes:		

PLO	D1	PLO2	PLO3	PLO4	PLO5	PLO6					
CO1	3	3	2	2	1	2					
	3	3	3	2	1	2					
CO2	2	1	1	2	3	3					
CO3	2	±	Ť	L	5	5					
(Correlat	(Correlation:1:Slight(Low)2:Moderate(Medium)3:Substantial(High))										
Syllabus	:										
Module	Content										
1	Introduction to Image Processing Systems, Image Acquisition, Sampling and Quantization, Pixel Relationships, Color Fundamentals and Modules, File Formats, Image Enhancement and Restoration, Spatial Domain Gray Level Transformations,										
2	 Histogram Processing, Spatial Filtering, Smoothing and Sharpening. Frequency Domain: Filtering in Frequency Domain, DFT, FFT, DCT, Smoothing and Sharpening Filters, Homomorphic Filtering. Noise Models: Spatial and Frequency Properties of Noise, Important Noise Probability Density Functions, Periodic Noise, Estimation of Noise Parameters, Constrained and Unconstrained. 										
3	Erosio morph Analys Detect Splittin descri	n and Dilation hological algori his, Detection of tion, Threshold	, Opening ar ithms, gray s of Discontinu ding, Region g. Represer ompression	nd closing, Hit scale morphol uities, Edge O based Segme ntation and de	or miss trans logy. Image Se perators, Edge entation: Regio escription: bou	logical Image Processing formation, basic gmentation and Feature Linking and Boundary on Growing, Region Indary and regional lossless image					
4	Video Formation, Perception and Representation: Video Capture and Display, Analog Video Raster, Digital Video, Fourier Analysis of Video Signals and Frequency Response of the Human Visual System. Video Sampling: Basics of the Lattice Theory, Sampling of Video Signals Over Lattices, Filtering Operations in Cameras and Display Devices. Video Sampling Rate Conversion, Different Video Modeling.Video Object Tracking and segmentation. Object recognition, pattern and pattern classes, recognition based on decision- theoretic methods, structural methods, case studies –image analysis, image coding.										
Textboo	Textbooks:										
			hard E Woo	ds, Digital Ima	age Processing	, Third Edition, Pearson					
	cation, 2 n C. Bovi		book of Ima	ge and Video	Processing (C	ommunications,					
	Networking and Multimedia). Academic Press, Inc., USA. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall India, 2008.										
vereien	LE3.	References:									

1. Madhuri A Joshi, Digital Image Processing: An Algorithmic Approach, Prentice Hall India,

2006.

- 2. Rafael C. Gonzalez, Richard E woods, Steven L Eddins, Digital Image Processing Using MATLAB, First Edition, Pearson Education, 2004.
- 3. Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis and Machine Vision, Third Edition, Brooks Cole, 2008.

M3020353 EMBEDDED SYSTEMS

Course Code Course Name Credit Split							:
							ion
M302353	Embeo	dded systems		3-0-0-1 2021			
Prerequisites	: Students	s should have alrea	ady taker	or are curre	ntly taking the	following cou	ırses
1. Digital Expe	erience Lal	0					
Course Objec	tives:						
		ncepts of embedde			troller platforr	ns, memory,	
-		pts and interactio	•	•			_
		s to develop basic		-	quired using th	ne ARM IDE of	Ĵ
		e and introduce d					
		s to leverage the s	kills acqu	ired to solve	real world pro	blems using	
	dded syste						
		r completion of th					
	•	crocontroller platf		•			
		mming on embed	-	-	=		
	-	interfacing perip				now to choos	e the
	-	RM microcontrolle					
	-	external I/O and se			ications.		
		L in resource const	trained a	oplications.			
Program Lear	-						
		undamental discipl	-	-			
	onstrate re	esearch skills that	are of	experimenta	l, computatio	nal, or theor	etical
nature							
		to conduct indepe					
		ition skills in a var	iety of fo	ormats (oral,	written) and t	to expert and	non-
expert audier							
		tandards of profes					
PLO6Acquire	•	onal skills such			· ·	•	
•	iai skilis, a	and write articles	for scho	larly journals	s if it is taugh	t by faculty i	n the
department.							
iviapping of c	ourse outo	comes with progra	im learni	ng outcomes	5:		
P	LO1	PLO2 PI	_03	PLO4	PLO5	PLO6	7
CO1	3	3	3	1	2	2	1
CO2	3	2	3	2	3	2	-
CO3	3	3	2	2	3	2	-
	5		-	_			
CO4	3	2	3	2	1	1	1
CO5	2	2	2	1	1	2	1
(Corre	elation: 1: S	Slight (Low) 2: Moo	derate (N	ledium) 3: Sເ	ıbstantial (Higł	ר(ו	

Module	Content
1	Introduction to Embedded Systems and its Architecture: Introduction & overview characteristics of embedded computing applications, concept of real time systems challenges in embedded systems. Instruction set architecture, CISC and RISC instruction set architecture, basic embedded processor, microcontrolle architecture, CISC examples, 8051, RISC example, DSP processors, ARM Cortex M Controllers.
2	Memory Management and Designing Embedded Computing Platforms: virtua memory, memory management, unit and address translation, I/O sub-system busy-wait I/O, DMA, interrupt driven I/O, co-processors and hardware accelerators processor performance enhancement, pipelining, super-scalar execution, CPU Bus and organization. Types of memory.
3	Introduction to the ARM architecture: operation modes and states - Programmer's model, ARM and Thumb instruction sets, Internal Memory - registers, specia function registers, Program Status Registers, flags, memory map, stack memory Exceptions and Interrupts, nested vectored interrupt controller (NVIC), vecto table, Fault handling. Introduction to ARM programming environments Introduction to IDE *, Basic programming and Debugging.
4	Designing Using ARM Cortex M3: Introduction to ARM Cortex M family, STM/T Microcontrollers*, I/O devices, timers and counters, watchdog timers, interrupt controllers, Serial Communication, ADC and DAC converters, Interfacing peripherals: displays, keyboards, Sensor interfacing, memory interfacing, I/O devices interfacing, ARM Mbed Platform and Introduction to ML in embedded platforms.
Text B	sooks :
Prc 2. ⁻ 3. J edi 4. I	Joseph Yiu, " The Definitive Guide to ARM Cortex-M3 and Cortex®-M4 ocessors",Newnes, 3rd Edition, Trevor Martin, The Designer's Guide to the Cortex-M Processor Family, Elsevier onathan W. Volvano, Embedded Microcomputer Systems: Real-Time Interfacing, 2nd tion, CENGAGE-Engineering Muhammed Ali Mazidi, Janice Mazidi and Rolin McKinlay, 8051 Microcontroller and bedded Systems, 2nd edition, Prentice Hall
Reference	s:
2.Jo 2no 3.	Kenneth J. Ayala, 8051 Microcontroller, 3rd edition, Thomson, 2005. oseph Yiu, "The Definitive Guide to ARM CORTEX-M3 and CORTEX®-M4 Processors d Edition", Elsevier Perry Xiao, "Designing Embedded Systems and the Internet of Things (IoT) with the M mbed", Wiley
	nstructors Choice : Based on availability. Engage students with Mini projects, if ES lab is not available to provide hands-or

M3022302 ETHICAL HACKING AND DEFENSIVE TECHNIQUES

Course Co	de	Course Name		Credi	t Split	Year of
					eminar/Project	Introduction
M302302		thical Hacking a fensive Techniq		3-0-	-0-0	2021
Prerequisite	s: Nil					
Course Obje	ctives:					
		s apply tools and		-	• •	
2. To provi adversar		s with a knowle	age of the	need for pro	otecting the cyb	er assets from ar
		ts with a know	ledge of	employing n	nachine learnin	g techniques for
•	ility assess		0	1 / 0		0 1
Course Outo	omes: Afte	er completion of	this cours	e, the studen	ts would be able	e to:
CO1:	Apply too	ols and technique	es to evalu	ate whether	the computer sy	stems, critical
		IoT and network		•		
		nd the need for p	protecting	network and	computer syste	ms from cyber
attac		م بسابه محم مارس		+		ouctore
	•	e vulnerabilities Ig techniques.	present ir	i the network	s and computer	systems using
Program Lea		• ·				
PLO and r PLO PLO entre the c	4 Show con non-expert 5 Practice e 6 Acquire p epreneurial lepartment		ls in a vari of profest such as c articles fo	ety of formats sional conduc ollaborative s r scholarly jou	s (oral, written) t and research; kills, ability to w urnals if it is tau	and to expert rite grants,
		comes with pro				
CO1	PLO1 3	PLO2	PLO3	PLO4	PLO5	PLO6
			5			
CO2	3	2		2	1	1
CO3	3	3		3		1
(Cori	elation: 1:	Slight (Low) 2: N	1oderate (Medium) 3: 9	Substantial (Hig	n))
Syllabus:			' (, , ,		
Module	Content					
1	Introductio	on to Ethical Hac	king, Hack	ing Concepts,	Hacking Life Cy	cle, Information
	Security La	ws and Standard	ds, Domair	is in Cyber Se	curity, Footprint	ing Concepts,
	Footprinitr	ng Countermeasi	ires			

	Network Scanning Concepts, Ports, Services & Protocols, OS Discovery,
	Enumeration Concepts & Techniques, Enumeration Countermeasures, Vulnerability
	Scanning & Identification, Vulnerability Assessment Report Preparation,
2	Hacking Concepts, Gaining Access, Escalating Privileges, Maintaining Access,
	Clearing Logs
	Malware Concepts, APT Concepts, Fileless Malware Concepts, Malware Analysis,
	Countermeasures to Malware, Sniffing Concepts & Techniques, Countermeasures
	to Sniffing, Detection mechanisms to sniffing, Social Engineering Concepts &
	Techniques, Identify Theft, Countermeasures to Social Engineering.
3	DoS & DDoS Attacks, Countermeasures to DoS & DDoS, Session Hijacking &
	Countermeasures, Hacking Web Applications, OWASP Top 10, Countermeasures to
	Web App Attacks, Web Shells, Patch Management. IDS, IPS, Firewall & NG- Firewall
	Concepts, DMZ Architecture, Network Infra Devices (Web Proxy, Reverse Proxy,
	SIEM Solutions, EDR & AV, WAF), Honeypots, SIEM Architecture, SOAR Concept,
	Use Cases in Network Defense, Use of Workbooks and Playbooks in Network
	Defense.
4	Wireless Threats, Hacking Wireless Networks, Vulnerabilities in Wireless Networks,
	Countermeasures to wireless Hacking, Hacking Mobile Platforms, Vulnerabilities in
	Mobile Apps, Cloud Computing Concepts & Technologies, Cryptography Concepts,
	Disk Encryption, Email Encryption, Vulnerabilities in Encryption, Countermeasures.

Text Books:

- 1. Phillip L. Wylie , The PentesterBluePrint, Wiley Publication, 2021.
- 2. James Corley, Kent Backman , Michael Simpson , Hands on Ethical Hacking and Network Defense, DelmarCengage Learning.
- 3. Patrick Engebretso, The Basics of Hacking and Penetration Testing, Second Edition, Syngress Publication.
- 4. Sean-Philip Oriyano, CEH Certified Ethical Hacker Version 8 Self-study Guide, Wiley / Sybex, 2014
- 5. Chris Anley, John Heasman, Felix Lindner, Gerardo Richarte, The Shell Coder's handbook Discovering and Exploiting Security Holes, 2nd Edition. John Wiley & Sons, 2011
- 6. Justin Seitz, Black Hat Python, No Starch Press, Inc. 2014
- 7.

References:

- 1. Peter Kim, The Hacker Playbook 2: Practical Guide to Penetration Testing, Createspace Independent Pub, 2015
- 2. Michael T Simpson, Hands-On Ethical Hacking and Network Defense 2nd Edition, Cengage Learning, 2012
- 3. Rafay Baloch, Ethical hacking and Penetration Testing Guide, CRC Press 2014.
- 4. Kevin Beaver, Hacking for Dummies 5th Edition. John Wiley & Sons, 2013
- 5. Stuart McClure, Joel Scambray and Goerge Kurtz, "Hacking Exposed Network Security Secrets & Solutions", Tata Mc

M3010264 ETHICAL HACKING AND NETWORK DEFENSE

	ode	Course Name	Credit Lecture/Lab/Sei	•	Year of Introduction		
M301264		nical Hacking and etwork Defense	3-1-(2021		
Prerequis	ites: Nil						
Course Ol	ojectives:						
1. To help the students apply tools and techniques to explore cyber securi							
breaches. 2. To provide students with a knowledge of the need for protecting the cybe							
assets from an adversary.							
		vide students with	a knowledge of	employing ma	achine learning		
	•	ues for vulnerability	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Course Or	utcomes: Aft	er completion of this	s course. the studen	ts would be abl	e to:		
		ols and techniques t					
inf	rastructures	, IoT and networks a	re vulnerable to cyb	er attacks.			
CC	2: Understa	and the need for prot	tecting network and	computer syste	ems from cyber		
	acks.						
	-	he vulnerabilities pre	esent in the network	s and compute	r systems using		
	chine learni .earning Out	ng techniques.					
PL an	O 4 Show co d non-exper O 5 Practice	holarship to conduct mmunication skills ir t audiences; ethical standards of	n a variety of format professional conduc	s (oral, written) t and research;	and to expert		
PL en in	the departm	professional skills su al skills, and write art ent. tcomes with progra	icles for scholarly jo		-		
PL en in	the departm	al skills, and write art ent.	icles for scholarly jo m learning outcome		-		
PL en in	the departm of course ou	al skills, and write art ent. tcomes with progra	icles for scholarly jo m learning outcome	PS:	ught by faculty		
PL en in Mapping	the departm of course ou PLO1	al skills, and write art ent. tcomes with progra	icles for scholarly jo m learning outcome 3 PLO4	PLO5	ught by faculty		
PL en in Mapping CO1	the departm of course ou PLO1 3	al skills, and write art ent. tcomes with progra PLO2 PLO	icles for scholarly jo m learning outcome 3 PLO4	PLO5 3	ught by faculty		
PL en in Mapping CO1 CO2 CO3	the departm of course ou PLO1 3 3 3 3	al skills, and write art ent. tcomes with progra PLO2 PLO 2	icles for scholarly jo m learning outcome 3 PLO4 3 3 3	PLO5 3	PLO6		
PL en in Mapping CO1 CO2 CO3 (Correlatio	the departm of course ou PLO1 3 3 3 3	al skills, and write art ent. tcomes with progra PLO2 PLO 2 3	icles for scholarly jo m learning outcome 3 PLO4 3 3 3	PLO5 3 1	PLO6		
PL en in Mapping CO1 CO2 CO3	the departm of course ou PLO1 3 3 3 3	al skills, and write art ent. tcomes with progra PLO2 PLO 2 3	icles for scholarly jo m learning outcome 3 PLO4 3 3 3	PLO5 3 1	PLO6		
PL en in Mapping CO1 CO2 CO3 (Correlation Syllabus: Module	the departm of course ou PLO1 3 3 3 on: 1: Slight (Content	Al skills, and write art ent. tcomes with progra PLO2 PLO 2 3 (Low) 2: Moderate (N	icles for scholarly jo m learning outcome 3 PLO4 3 3 Vedium) 3: Substa	PLO5 3 1 ntial (High))	PLO6		
PL en in Mapping CO1 CO2 CO3 (Correlation Syllabus:	the departm of course ou PLO1 3 3 3 on: 1: Slight (Content Introductio	Al skills, and write art ent. tcomes with progra PLO2 PLO 2 3 (Low) 2: Moderate (N pn to ethical hacking:	Types of hackers, Et	PLO5 3 1 ntial (High))	PLO6 1 1 teps, Social		
PL en in Mapping CO1 CO2 CO3 (Correlation Syllabus: Module	the departm of course ou PLO1 3 3 3 on: 1: Slight (Content Introductio engineering	Al skills, and write art ent. tcomes with progra PLO2 PLO 2 3 (Low) 2: Moderate (N	Types of hackers, Et cloning, Whatsapp F	PLO5 3 1 ntial (High))	PLO6 1 teps, Social res and		

	Implementing ML based Trojan and spyware detection mechanisms.
2	Network scanning and Web application Penetration testing:-Information
	gathering, Banner grabbing tools, Foot printing and reconnaissance, Recon-ng
	framework, Enumeration, Scanning the networks, Advanced IP Scanner, Port
	scanning using Nmap, vulnerability scanning using Openvas and Nessus, Network
	packet capturing, Wireshark, Python for hackers, Scapy, Buffer overflow attacks,
	Exploit development, Immunity debugger, Shell coding in Linux, Metasploit
	framework, Routersploit, Pentesting web applications, Web Vulnerability
	scanners, Cross site scripting, SQL injection attacks, Local file inclusion, Remote
	file inclusion, Cross site request forgery, Burp suite application, Websploit
	framework, Bug bounty platforms, Wireless protocols, Hacking WLAN
	Authentication, Wireless MITM, WEP Cracking, WPA/WPA2-PSK hacking, Hacking
	Mobile Devices:- Vulnerabilities in Mobile Apps, OWASP top 10 vulnerabilities fo
	mobile application, Investigating SQL injection attack challenges, Investigating
	Padding Oracle Attack in a PHP website, ML based vulnerability assessment in
	networks.
3	IoT hacking:- Detecting open and poorly protected communication ports, Sniffing
	Capture and analysis of radio signals in IoT, Detecting firmware modification
	attacks and buffer overflow attacks, Identifying buses and Interfaces of the IoT
	device, NandGlitching, JTAG debugging and Exploitation. Investigating software
	and hardware attacks in IoT.
	Critical Infrastructure hacking and penetration testing: - Passive enumeration,
	Active enumeration, Physical inspection, Active port scanning, Active testing of
	network isolation, Raspberry PI, Arduino, Honeypot using Raspberry Pi,
	Investigating different software and hardware attacks in SCADA systems, ML
	based vulnerability assessment in IOT and critical infrastructures.
4	Network Defense:- Understanding Routers, Routing Protocols, Hardware
	Routers, Access control Lists, Understanding Firewalls:- Firewall Technology,
	Understanding Intrusion detection systems and Prevention systems:- Network
	based and Host based IPS/IDS, Web Filtering, Security Incident Response Team,
	Investigating Honeypot Mechanisms for Network Defense, Building ML based
	network defense mechanisms.

- 1. Phillip L. Wylie, The PentesterBluePrint, Wiley Publication, 2021.
- 2. James Corley, Kent Backman, Michael Simpson, Hands on Ethical Hacking and Network Defense, DelmarCengage Learning.
- 3. Patrick Engebretso, The Basics of Hacking and Penetration Testing, Second Edition, Syngress Publication.

References:

1. Peter Kim, The Hacker Playbook 2: Practical Guide to Penetration Testing, Createspace Independent Pub, 2015.

M3010293, M302255HARDWARE SECURITY

Course	Course Name	Credit Split	Year of

			Lecture/Lab/Seminar/Projec	t Introduction
M30129 M30225	· I H	ardware Security	3-1-0-0	2021
-	tes: Prior kno hardware.	wledge of computer net	works, cryptography, sensor netwo	orks and basics of
Course Ob				
his cours	e aims to:			
		ge of the state-of-the-art	security methods and devices.	
		•	tack techniques and countermeasu	ires.
		-	rdware vulnerabilities and provid	
kno	wledge and s	kills needed to build trus	tworthy hardware.	
Course Ou	tcomes:			
Jpon succ	essful comple	tion of this course, stude	ents will be able to:	
		vulnerabilities in current	digital system design flow and the	physical attacks t
	e systems. Demonstrate	proficiencies in understa	anding hardware cocurity issues	
			anding hardware security issues. Ire and trusted hardware	
			ain of hardware security and apply	their knowledge i
	arch and deve		,,	0
Program L	earning Outc	omes:		
-				
וח	01 Davalan	trong fundamental disci	alinary knowledge	
		strong fundamental disci		or theoretical
PL		-	olinary knowledge re of experimental, computational	or theoretical
PL na PL	. O 2 Demonst iture . O 3 Apply sch	rate research skills that a olarship to conduct inde	re of experimental, computational	or theoretical
PL na PL PL	O 2 Demonst ture O 3 Apply sch O 4 Show con	rate research skills that a olarship to conduct inde nmunication skills in a va	re of experimental, computational, pendent and innovative research riety of formats (oral, written)	or theoretical
PL na PL PL PL	O 2 Demonst iture O 3 Apply sch O 4 Show con O 5 Practice e	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe	re of experimental, computational pendent and innovative research riety of formats (oral, written) essional conduct and research	
PL na PL PL PL	O 2 Demonst ture O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe	re of experimental, computational, pendent and innovative research riety of formats (oral, written)	
PL na PL PL PL jou	O 2 Demonst ature O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals.	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article	
PL na PL PL PL jo	O 2 Demonst ature O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals.	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes:	
PL na PL PL PL jou	O 2 Demonst ture O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals.	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes:	es for scholarly
PL na PL PL JOI Mapping	O 2 Demonst iture O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals. of course ou PLO1	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as itcomes with program PLO2 PLO	re of experimental, computational pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: <u>3 PLO4 PLO5</u>	es for scholarly
PL na PL PL JO Vapping CO1	O 2 Demonst iture O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2	es for scholarly
PL na PL PL jo Mapping CO1 CO2	0 2 Demonstrature 0 3 Apply sch 0 4 Show con 0 5 Practice e 0 6 Acquire p urnals. of course ou PLO1 2 2	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1	es for scholarly
PL na PL PL jo Vapping CO1 CO2 CO3 CO3	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2	rate research skills that a olarship to conduct inden munication skills in a va ethical standards of profe rofessional skills such as tecomes with program PLO2 PLO 1 1 1 1 2 1	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3	es for scholarly PLO6
PL na PL PL jo Vapping CO1 CO2 CO3 CO3	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 2	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3	es for scholarly PLO6
PL na PL PL joi Vapping CO1 CO2 CO3 CO3 CO4 Correlation	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 2	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3	es for scholarly PLO6
PL na PL PL OI Vapping CO1 CO2 CO3 CO3 CO4 Correlation	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2 n: 1: Slight (Low	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 2	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3	es for scholarly PLO6
PL na PL PL PL jo Vapping CO1 CO2 CO3 CO4 CO3 CO4 Correlation	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 n: 1: Slight (Low	rate research skills that a olarship to conduct inden munication skills in a va ethical standards of profe rofessional skills such as tcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 2 2 0 2: Moderate (Medium)	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3: Substantial (High))	es for scholarly PLO6 2
PL na PL PL PL jo Vapping CO1 CO2 CO3 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 n: 1: Slight (Low Content Hardware S	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 4) 2: Moderate (Medium)	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3: Substantial (High))	es for scholarly PLO6 2 ecuring Hardware
PL na PL PL 01 CO1 CO2 CO3 CO4	O 2 Demonstrature O 3 Apply sch O 4 Show com O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2 1: Slight (Low Hardware S Threats to H	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 1 2 1 2 2 4 2 2 2 4 2 2 2 2 3 2 2 3 2 4 2 2 3 3 3 3	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3 Substantial (High)) pilities, and Attacks. Challenges in S urity Vulnerability Assessment. Har	ecuring Hardware
PL na PL PL PL jo Vapping CO1 CO2 CO3 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4	O 2 Demonstrature O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2 n: 1: Slight (Low Content Hardware S Threats to F Computer S	rate research skills that a olarship to conduct inde nmunication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 2 1 2 2 2 () 2: Moderate (Medium)	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3: Substantial (High))	es for scholarly PLO6 2 ecuring Hardware dware-Assisted Trusted Platform
PL na PL PL PL jo Mapping CO1 CO2 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4 CO4	O 2 Demonstrature O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2 n: 1: Slight (Low Content Hardware S Threats to H Computer S Module (TP	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as PLO2 PLO 1 1 1 1 1 2 1 2 2 0 2: Moderate (Medium) 3 ecurity threats, Vulnerate lardware. Hardware Secu ecurity: ARM TrustZone, Ms), TPM Cryptographic	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3: Substantial (High)) ilities, and Attacks. Challenges in S urity Vulnerability Assessment. Har Intel SGX. Hardware Root of Trust,	ecuring Hardware dware-Assisted Trusted Platform Cryptographic
PL na PL PL PL jo Vapping CO1 CO2 CO3 CO4 CO3 CO4 Correlation	O 2 Demonstrature O 3 Apply sch O 4 Show con O 5 Practice e O 6 Acquire p urnals. of course ou PLO1 2 2 2 2 1: 1: Slight (Low Content Hardware S Threats to F Computer S Module (TP Coprocesso Application	rate research skills that a olarship to conduct inde munication skills in a va ethical standards of profe rofessional skills such as Itcomes with program PLO2 PLO 1 1 1 2 1 2 2 2 4) 2: Moderate (Medium) 3 ecurity threats, Vulnerak Hardware. Hardware Secu ecurity: ARM TrustZone, Ms), TPM Cryptographic rs. Implementing Securit s and Uses, FPGA Based S	re of experimental, computational, pendent and innovative research riety of formats (oral, written) essional conduct and research collaborative skills and write article learning outcomes: 3 PLO4 PLO5 2 1 2 1 2 3 3: Substantial (High)) ilities, and Attacks. Challenges in S urity Vulnerability Assessment. Har Intel SGX. Hardware Root of Trust, Hardware, Hardware Accelerators, y in Reprogrammable Hardware. Ff	es for scholarly PLO6 2 ecuring Hardware dware-Assisted Trusted Platform Cryptographic PGA Basics,

	Intellectual Property (IP) Piracy and IC Piracy, Design Techniques to Prevent IP and IC Piracy, Physically Unclonable Functions (PUFs), PUF Implementations and using PUFs to prevent Hardware Piracy, Model Building Attacks on PUFs (Case Study: SVM Modeling of Arbiter PUFs, Genetic Programming based Modeling of Ring Oscillator PUF).JTAG Protection.
3	Side-channel Attacks (SCA) on Cryptographic Hardware: Current-measurement based Side-channel Attacks, power, electromagnetic SCA. Design Techniques to Prevent Side- channel Attacks, Improved Side-channel Attack Algorithms and Cache Attacks. Fault- tolerance of Cryptographic Hardware, Fault Attacks. Hardware Trojan based SCA.
4	 Hardware Trojans: Hardware Trojan Nomenclature and Operating Modes, Countermeasures-Design and Manufacturing Techniques to Prevent/Detect Hardware Trojans, Logic Testing and Side-channel Analysis based Techniques for Trojan Detection. Case study: Hardware security issues and solutions in vehicles, hardware security of fog end-devices for the internet of things.

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals
- 1. Debdeep Mukhopadhyay and Rajat Subhra Chakraborty, Hardware Security: Design, Threats, and Safeguards, Chapman and Hall/CRC.
- 2. Debdeep Mukhopadhyay, Rajat Subhra Chakraborty, Hardware Security: Design, Threats, and Safeguards Hardcover, ISBN-13: 978-1439895832, Chapman and Hall/CRC.
- 3. Jin Y. Introduction to hardware security. Electronics. 2015 Dec; 4(4):763-84.
- 4. Sidhu S, Mohd BJ, Hayajneh T, Hardware security in IoT devices with emphasis on hardware Trojans. Journal of Sensor and Actuator Networks. 2019 Sep; 8(3):42.
- 5. Butun I, Sari A, Österberg P. Hardware Security of Fog End-Devices for the Internet of Things. Sensors. 2020 Jan; 20(20):5729.
- 6. Labrado C, Thapliyal H. Hardware security primitives for vehicles. IEEE Consumer Electronics Magazine. 2019 Oct 31; 8(6):99-103.
- 7. Prinetto P, Roascio G, Hardware Security, Vulnerabilities, and Attacks: A Comprehensive Taxonomy. InITASEC 2020 Aug 4 (pp. 177-189).

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Projec t	Year of Introduction			
M301222	Human Computer Interaction	3-0-0-1	2021			
•	Prerequisites: Students should possess the fundamental programming skills in Computer Programming Languages such as Python and have prior experience in handling software scripting, prototyping and					

M3010222 HUMAN COMPUTER INTERACTION

code management tools.

Course Objectives:

- 1. Understand the fundamentals of Human-Computer Interaction and design technologies and recognize the theoretical perspectives of human factors that influence the acceptance of computer interfaces.
- 2. Understand the critical aspects of implementation of human-computer interfaces and identify the various tools and techniques for interface analysis, design, and evaluation and develop comprehensive, user-friendly and interesting interfaces.
- 3. Introduce the student to the literature and research aspects of human-computer interaction.

Course Outcomes:

By the conclusion of this course, students should be able to:

C01: Explain and apply core theories and models from the field of HCI.

CO2: Apply theoretical concepts to design and develop useful and usable interfaces.

C03: Discuss and critique research in the field of HCI and report research findings in scientific articles.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge.

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature.

PLO 3 Apply scholarship to conduct independent and innovative research.

PLO 4 Show communication skills in a variety of formats (oral, written).

PLO 5 Practice ethical standards of professional conduct and research.

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1		1		
CO2	2	2	1	2		
CO3	1	2	2	2		2
Correlat	ion: 1: Slight (Lo	w) 2: Moderate	(Medium) 3:	Substantial (High))	
yllabus:						
/lodul	Content					
1	Introduction	to HCI, Histor	ry of HCI, Fac	ctors in HCI	, Disciplines c	ontributing to H
	User Interfac	e Design: Mo	dels, Principle	es, Practices	. Direct Manip	oulation. Input a
	Interaction	Techniques <i>,</i>	Tangible ar	nd Embodi	ed User Int	eractions, Mob
	Interactions, Crowdsourcing, Augmented/Virtual Reality and HCI, Web Interfaces					
	Assistive and	Accessible Inte	erfaces.			
2	Cognitive Fra	mework of HC	I. Mental mo	dels. Percep	tion & Repres	entation. Attention
	and Interface	Design. Mem	nory in Interfa	ace Design.	Knowledge Re	presentation. Us
	Modeling, Ur	nderstanding	Users, Cognit	ive and Aff	ective Factors	.User Interface f
	Games,Social	Issues influer	ncing HCI Des	ign and Use	. Modelling Sc	cial and Emotior
	Processes.Co	ntext Awarene	ess in HCI.			
3	Interaction wit	h Natural Langı	uages, Next Ge	neration Inte	rface.Interfaces	Design and
	Prototyping, Usability Testing & Analytic Evaluation: Introduction, Cognitive Walkthrough.					
	Heuristic Evaluation. Evaluation with Cognitive Models, Evaluation with Users, Model-based					
	-	luation. HCI an				
4	0		•		• •	igital and Physic
						essibility Researc
				-	-	Interfaces, Mob
	and Wearable	e Computing,	High End Clou	ud Service a	nd Multimoda	l Client Interactio
		abled Systems				

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals.
- 2. Alan Dix, Janet Finlay, Gregory Abowd, & Russell Beale, Human-Computer Interaction (3rd ed.), Prentice Hall, 2003.
- 3. Andrew Sears, Julie A. Jacko, Julie A. Jacko, The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications, CRC Press, eBook ISBN9780429163975

- 4. Ben Shneiderman, Designing the user interface strategies for effective human computer interaction, Pearson, New Delhi. 2004
- 5. Cooper, Reimann, Cronin, &Noessel, About Face: The Essentials of Interaction Design, Fourth Edition, 2014.
- 6. Donald Norman, The Design of Everyday Things, Basic Books, 2002.
- 7. Human Computer Interaction (HCI) NPTEL Course
- 8. J. Preece, Y.RogersandH. Sharp, Interaction design: Beyond Human- Computer Interaction, John Wiley & Sons. 2015.

M3010203 IMAGE & VIDEO PROCESSING

Course Code	Course Name		Credit	-	Year of
M301203	Image & Video Proce		cture/Lab/Se 3-0-	eminar/Project	Introduction 2021
101301203			5-0-	0-1	2021
Prerequisites	Nil				
 processing To help th To connect 	e students with a good g tasks described in the e students develop the ct the concepts to oth	e syllabus. e ability to s ner domain	olve problem both within	ns using the learn	•
	e learning and pattern r	-		ents would be at	ole to:
CO2: A proces CO3: D throug	m and state of the art s malyse and evaluate cr sing algorithms and sys Design and demonstrate th team research project	itically the stems. e a working	; image/video	o signal processir	
PLO 1 PLO 2 theore PLO 3 PLO 4 and no PLO 5 PLO 6	ning Outcomes: Develop strong fundam Demonstrate research stical nature Apply scholarship to co Show communication s on-expert audiences; Practice ethical standar Acquire professional sk	skills that a onduct inde skills in a va rds of profe kills such as	pendent and pendent and riety of form essional cond collaborative	nental, computa innovative resea ats (oral, writter uct and research e skills, ability to	arch n) and to expert n;
•			for scholarly	,	aught by faculty
in the	department. Durse outcomes with p			-	
in the	department. Durse outcomes with p			-	PLO6

CO2	3	3	3	2
CO3	2	3	3	2

(Correlation: 1: Slight (Low) 2: M	oderate (Medium)	3: Substantial (High))
------------------------------------	------------------	------------------------

Syllabus:	
Module	Content
1	Steps in Image Processing Systems, Image Acquisition, Sampling and Quantization, Pixel Relationships, Color Fundamentals and Modules, File Formats. Image Enhancement and Restoration, Spatial Domain Gray Level Transformations, Histogram Processing, Spatial Filtering, Smoothing and Sharpening, Frequency Domain, Filtering in Frequency Domain, Smoothing and Sharpening Filters, Homomorphic Filtering
2	Image Segmentation and Feature Analysis, Detection of Discontinuities, Edge Operators, Edge Linking and Boundary Detection, Thresholding, Region based Segmentation: Region Growing, Region Splitting and Merging. Image Compression: classification of lossy and lossless image compression schemes, image segmentation and object recognition, image coding.
3	Video Formation, Perception and Representation: Video Capture and Display, Analog Video Raster, Digital Video, Fourier Analysis of Video Signals and Frequency Response of the Human Visual System. Video Sampling: Basics of the Lattice Theory, Sampling of Video Signals Over Lattices, Filtering Operations in Cameras and Display Devices. Video Sampling Rate Conversion, Different Video Modeling.
4	Two-Dimensional Motion Estimation: Block-Based Transform Coding, Predictive Coding. Video Compression Standards. Video Object Tracking and segmentation, Video Filtering, enhancement, Video stabilization and super- resolution, Video coding, representation, Content based Video retrieval, Video based Rendering.

Text Books:

1. Gonzalez, R. C. & Woods, R. E. (2008), Digital Image Processing, Prentice Hall, Upper Saddle River, N.J.

 Anil K. Jain. 1989. Fundamentals of Digital Image Processing. Prentice-Hall, Inc., USA.
 John W. Woods. 2011. Multidimensional Signal, Image, and Video Processing and Coding, Second Edition (2nd. ed.). Academic Press, Inc., USA.

4. Y. Wang, J. Ostermann and Y.-Q. Zhang, Video Processing and Communications. Signal Proc. Series, Prentice Hall, 2002.

References:

- 1. William K. Pratt. 2007. Digital Image Processing: PIKS Scientific Inside. Wiley-Interscience, USA.
- 2. Scott E. Umbaugh. 2010. Digital Image Processing and Analysis: Human and Computer Vision Applications with CVIPtools, Second Edition (2nd. ed.). CRC Press, Inc., USA.
- 3. A. Murat Tekalp. 2015. Digital Video Processing (2nd. ed.). Prentice Hall Press, USA.
- 4. Alan C. Bovik. 2005. Handbook of Image and Video Processing (Communications, Networking and Multimedia). Academic Press, Inc., USA.

M3010203 INDUSTRIAL IOT AND DIGITAL TWINS

	e e	Course Name		Credit S Lecture/Lab/Ser t	-	Year of Introduction
M3012	03	rial Internet of T) and Digital Ty	-	3-0-0	-1	2021
-		wledge in compu ogramming in Py		s, operating system	ns, distributed s	ystems,
Course C	Objectives:					
ар; 2. То	olications of IIoT expose studen	and Digital Twin	s. ge fields of	anding of the fui		
Course C	Outcomes:					
At the er	nd of this course	e, students are ex	pected to be	e able to understan	d:	
CO2: varic CO3: Program	ous environment Complete pape Learning Outco	lish and sustain ts. r reviews, oral pr	resentations,	s for complicated and a final course		ted systems on
	nature P LO 3 Apply sch	•	•	ent and innovative		
 	PLO 6 Acquire plournals.	thical standards or rofessional skills :	of profession such as colla	al conduct and res borative skills and	earch	or scholarly
 	PLO 5 Practice e PLO 6 Acquire province of ournals. g of course ou	thical standards or rofessional skills standards of the second skills standards of the second standard	of professior such as colla ogram lear	nal conduct and res borative skills and ning outcomes:	earch write articles fo	
i i Mappin	PLO 5 Practice e PLO 6 Acquire p ournals. g of course ou PLO1	thical standards of rofessional skills of the second skills of the second skills of the second state of th	of profession such as colla ogram lear PLO3	al conduct and res borative skills and ning outcomes: PLO4	earch	PLO6
Mappin CO1	PLO 5 Practice e PLO 6 Acquire prournals. g of course ou PLO1 2	thical standards of rofessional skills stored to the second skills of the second skills of the second state of the second stored	of profession such as colla ogram lear PLO3 2	nal conduct and res borative skills and ning outcomes: PLO4 2	earch write articles fo	PLO6
i i J Mappin	PLO 5 Practice e PLO 6 Acquire p ournals. g of course ou PLO1	thical standards of rofessional skills of the second skills of the second skills of the second state of th	of profession such as colla ogram lear PLO3	al conduct and res borative skills and ning outcomes: PLO4	earch write articles fo	PLO6
Mappin CO1 CO2 CO3 Correlat	PLO 5 Practice e PLO 6 Acquire pr ournals. g of course ou PLO1 2 1 :ion: 1: Slight (Lo	thical standards of rofessional skills tcomes with pr PLO2 2 2 2 2 2 ww) 2: Moderate	of profession such as colla ogram lear PLO3 2 2 2 2	ning outcomes: PLO4 2 2 2	PLO5	PLO6 1 1
Mappin CO1 CO2 CO3 (Correlat Syllabus: Modul	PLO 5 Practice e PLO 6 Acquire prournals. g of course ou PLO1 2 1 :ion: 1: Slight (Lo	thical standards of rofessional skills tcomes with pr PLO2 2 2 2 2	of profession such as colla ogram lear PLO3 2 2 2 2	nal conduct and res borative skills and ning outcomes: PLO4 2 2 2 2 2	PLO5	PLO6 1 1
Mappin CO1 CO2 CO3 (Correlat	PLO 5 Practice e PLO 6 Acquire province ournals. g of course ou PLO1 2 1 tion: 1: Slight (Lo Industrial IoT a The History ar Industry 4.0, I Industry 4.0, E of IIoT: IIoT Se	thical standards of rofessional skills of tcomes with pr PLO2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	of profession such as colla ogram lear PLO3 2 2 (Medium) dustry 4.0, E gn Principles erence Archi , Industrial D	al conduct and res borative skills and ning outcomes: PLO4 2 2 2 3: Substantial (Hig Basics of Industry 4 5, The Challenges of tecture of IIoT, Res ata Transmission a	PLO5 PLO5 0, Key Technolo f Industry 4.0, I	PLO6 1 2 ogies in lloT and g Technologies

	Systems in IIoT. Machine Learning for IIoT. Resource Management. Data Management In IIoT. Security and Privacy in IIoT. Collaborations between Heterogeneous IIoT Systems. Public Safety in IIoT. Research Directions of Control, Networking and Computing for IIoT.	
II	Introduction to Digital Twins. Applications of Digital Twins. Digital Twin Conceptual Architecture. Challenges and Enabling Technologies associated with Digital Twins. The combination of Digital Twins, Data Analytics Platforms, AI Frameworks and Libraries, Data Lakes Running on Cloud Environments (Public, Private or Hybrid). Open Research and Challenges with Digital Twins.	
	Applications: Digital Twins for Factory Automation and Smart Manufacturing. Preventive and Predictive Maintenance of Industrial Assets. Design, Development, and Management of Systems such as Medical Instruments, Robots, Drones, etc.	
IV	 Review of different IIoT Platforms (Open source and Commercial): Zetta, ThingsBoard, Distributed Services Architecture (DSA), OpenRemote, Node-RED, M2MLabs Mainspring, Thinger, ThingSpeak; GE Predix, AWS IoT, Bosch IoT Suite, ThingSpace and ThingWorx. 	
	Applications and Case Studies (Smart Agriculture, Smart Healthcare, Smart Manufacturing, Smart Cities, Smart home, Environment and Sustainability, Smart Grid etc).	
Bool	ss and other resources:	
2. 9 	Recent Publications from top-Tier Conferences and Journals. Sudip Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Industrial Internet of Things and Industry 4.0, ISBN 9780367897581, CRC Press. Houbing Song, Glenn A Fink, Sabina Jeschke, Security and Privacy in Cyber-Physical Systems: Foundations, Principles and Applications, ISBN: 9781119226048, Wiley & Sons td.	
4. 	Pethuru Raj, Preetha Evangeline, The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, Volume 117, ISBN: 9780128187562, Academic Press.	
	Arvind Ravulavaru, Enterprise Internet of Things Handbook, ISBN: 9781788838399, Packt Publishing.	
	Anand Tamboli, Build Your Own IoT Platform: Develop a Fully Flexible and Scal Internet of Things Platform in 24 Hours, ISBN-13: 978-1484244975, Apress.	
	ouis Schrenk, Digital Twin Technology: Twins Digital Technology And Industries: Digital Twin Deployment, Kindle Edition.	
	/ijay Raghunathan, Digital Twin: A Complete Guide For The Complete Beginner, Kindle Edition.	

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction			
M302225	Information Retrieval	3-0-0-1	2021			
Prerequisites: Nil						
Course Objectives: To impart skills needed for understanding and applying data mining and big data technologies						

M3020225 INFORMATION RETRIEVAL

To equip the students with the ability to identify and analyse problems solvable with data mining and big data technologies

To impart solution design capability with data mining and big data technologies

Course Outcomes: After completion of this course, the students would be able to: **CO1:** Understand and develop techniques in data ming and big data management **CO2:** Problem identification and analysis skills on data mining and big data applications

CO3: Solution design capability with data mining and big data technologies

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3	3	1	1	1
CO2	3	3	3	2	1	2
CO3	3	3	3	1	1	3

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Introduction to Information Retrieval - Relevance of Information retrieval, The nature of the unstructured and semi-structured text, traditional IR mechanisms - Inverted index and Boolean queries
2	Text encoding: tokenization, stemming, stop words, phrases, Retrieval Models - Boolean, vector space, TF-IDF, Okapi, cosine measure, IR Performance Evaluation - User happiness, precision, recall, F-measure.
3	Word Embeddings and Applications - Word2Vec, Glove, Concept2Vec, Sentiment and Emotion Analysis in Text - rule based and learning based approaches. Single Document and multi document Summarization. Ontology and applications
4	Search Engine Architecture - web crawlers, indexing, query processing, retrieval models - ranking algorithm. Link Analysis - Page Rank, Federated Search, Enterprise Search Engines

- 1. Introduction to Information Retrieval, Christopher D. Manning, PrabhakarRaghavan, HinrichSchütze, 2008
- 2. Modern Information Retrieval, Baeza-Yates & Ribeiro-Neto, 1999

References:

- 1. Search Engines: Information Retrieval in Practice. Bruce Croft, Donald Metzler, and Trevor Strohman, Pearson Education, 2009.
- 2. Information Retrieval: Implementing and Evaluating Search Engines. Stefan Buttcher, Charlie Clarke, Gordon Cormack, MIT Press, 2010.

M3010253 INTERNET OF DRONES

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction
M301253	Internet of Drones	3-0-0-1	2021
Prerequisites	Prior knowledge of comput	ter networks, cryptography, sensors	and basics of
computer har	dware.		
	_		
This course ai	ns to:		
1. Give knowl	adaa about the Internet of D	rones and the challenges associated.	
	sues and attacks and their co	-	
		tworks and the challenges associated	
Course Outco			•
	ful completion of this course	. students will be able to:	
	cribe the issues, challenges i		
	, 0	d secure frameworks for IoD.	
C03 :Dem	onstrate proficiencies in uno	derstanding IoD design with blockcha	ain and AI.
C04 : Dis	cuss the recent trends in t	the domain of drone technology a	nd apply thei
knowled	ge in research and developm	nent.	
-	ning Outcomes:		
	o strong fundamental discipli		
	strate research skills that are	e of experimental, computational, or	theoretical
nature			
		endent and innovative research	
		ety of formats (oral, written)	
	e ethical standards of profess	ollaborative skills and write articles fo	or scholarly
journals.	professional skills such as co	onaborative skins and write articles in	JI SCHOIDIN
journais.			
Mapping of co	ourse outcomes with progra	m learning outcomes:	

CO1	2	1		2		
CO2	2	1	1	1		
CO3	2	2	1	2	1	
C04	-	2	2	2	3	2
	on: 1: Slight (Low) 2: Moderate (M	-		5	2
Syllabus:		, (
Module	Content					
1	Application	Areas. Current	Scenario, Dro	ne Subsystems	. Classificatio	n of Drones.
				ers, Operation		
		•		bution and Dep	•	
				Aware Solutic/	•	
	-	-	_	Edge Computin		
		Resource Man		0		
2			-	ecurity Require	ments, Classi	fication of
	Cyber- Attac	ks and Mitigat	ion Technique	es.Behavior and	l Vulnerability	Assessment.
	Addressing t	he Privacy Issu	ies. Trust Mar	nagement. Auth	entication Te	chniques.
	Secure Data	Dissemination	. Blockchain E	Based Solutions	. Drone Foren	sics. UAV
	Network Sin	nulators: AVEN	S, NS3.			
3	Application	of Machine and	d Deep learnii	ng, Lightweight	AI Technique	s for UAV.
	Edge AI and	loD. Drone Pro	ogramming. D	rone Data Anal	ytics. Drones	as the Internet
		ngs. Internet o				
4				ase study: Early		-
				ent Delivery Sys		
	Acquisitione	tc.Simple Proje	ects. Network	ing with Drone	Startups in In	dia.
Do oko ov	nd other reso					
		from top-Tier C	onforoncos on	Lournals		
		•		Fog End-Devices	for the Interne	t of Things
	ors. 2020 Jan; 2	-		og End Devices		t of 111155.
			n MD, Shin S	Y. A Blockchair	n-Based Artific	cial Intelligence-
Empo	owered Contag	ious Pandemic S	Situation Super	vision Scheme L	Jsing Internet	of Drone Things.
		unications. 202	•			
	•			nd Performance,		
					-	nes and artificial
	-			RO) 2019 May 20		Communication
						evelopment and
					• •	ISBN 978-3-030-
	8-7, Springer		-			
				itives for vehicle	es. IEEE Consu	imer Electronics
		31; 8(6):99-103				
				-		ess networks: A
	• •			Society. 2021 Ap		
		2020 Aug 4 (pp	•	meravinues, dh	u ALLAUKS: A	Comprehensive
	•			n IoT devices wit	h emphasis on	hardware
				2019 Sep; 8(3):4	-	
-				• • • •		g-enabled drone
		E Network. 202				
		· · · ·		•		ernet of Drones
Secui	rity and Privacy	Issues: Taxonor	ny and Open C	hallenges. IEEE A	ccess. 2021 Ap	or 9; 9:57243-70.

M3010223 IOT NETWORKS AND ENDPOINT SECURITY

Course C	ode		Course Nam			dit Split /Seminar/Projec t	Year of Introduction
M301223			etworks and pint Security		2	-2-0-0	2021
-			-		•	outer networks, cry	vptography,
sensor net	works a	and ba	sics of connec	ted system	S.		
Course Ob	iertive						
	-		prehensive a	and in-der	oth underst	anding of netwo	rk security. IoT
	-		t security and	=		-	
		-	•			ecurity while pro	viding sufficient
			ther study and				0
Course Ou			,				
Upon succ	essful c	omple	tion of this co	urse, stude	ents will be a	ble to:	
C01:	Underst	tand n	etwork securit	y threats,	security serv	vices, and countern	neasures.
C02 :	Underst	tand v	ulnerability ar	alysis and	risk mitigati	on strategies and p	orepare a sample
Vulne	erability	Asses	sment Report				
C03 :	Expose	stude	ents to currer	nt literatur	e in IoT net	tworks and endpo	oint security and
unde	rstand v	/arious	s security chal	lenges and	issues.		
C04 :	Comple	ete a t	term project,	including	independen	t research, oral p	resentation, and
progr	ammin	g on la	test advancer	nent in the	related area	as.	
PLC the PLC PLC PLC	D 2 Dem coretical D 3 App D 4 Show D 5 Prac	nonstra I natur Iy scho w com ctice et	e blarship to cor munication sk chical standare	kills that ar iduct indep ills in a var ds of profes	e of experim endent and iety of form ssional cond	nental, computatio innovative researc ats (oral, written) uct and research	ch
				is such as o	collaborative	e skills and write ar	ticles for
SCH	iolarly jo	Jurnal	5.				
Mapping c	of cours	e outo	omes with pr	ogram lear	ning outcon	nes:	
_ · · · ·	PL01		PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3		2	1	3		
CO2	3		2	2	2	2	
CO2 CO3	2		2	2	2	2	
C03	2		2	2	3	3	1
			z ow) 2: Modera		_	tantial (High))	⊥
•			and Endpoint	•	iij 5.5005		
	Content			Jecunty			
e	conteil	L					
C							

1	Overview of TCP/IP, TCP/IP networks, Network Vulnerabilities, Zero-day
	vulnerabilities, Malwares, Threat and Risk Assessment, Network Vulnerability
	Assessment, Vulnerability Naming Schemes, Information Infrastructure Defense,
	Reverse Engineering and Code Obfuscation. Network Access Control. Firewalls. DMZ
	Network. Router Security. Enterprise Wireless Network Security Protocols. Security in
	5G & 6G. Endpoint Devices, Security of Endpoint Devices, Endpoint Device Security
	Challenges. Case Studies: Cyber Attacks on Critical Infrastructure.
2	IoT Architecture, Resource Management, Interoperability in IoT, IoT Communication
	Protocols, Network and Transport Layer Challenges, IoT Threats and Security
	Challenges, Attacks on Different Layers and Categorization of IoT Attacks, IoT
	Gateway Security, IoT Routing Attacks, Secure Data Aggregation Mechanisms,
	Security Analytics and Threat Prediction. IoT Endpoint Devices, Threats to IoT
	Endpoints, General Attacks on IoT Endpoint Devices, IoT Endpoint Security
	Mechanisms, Security of AIOT Devices. Endpoint Security Best Practices. Case
	Studies.
3	Security Frameworks for IoT networks, Intrusion Detection and Prevention,
	Lightweight Cryptography, Key Management and Authentication, Privacy Enhancing
	and Anonymization Techniques, Trust and Identity Management, Access Control, IoT
	Simulators to simulate IoT Networks and Attacks on IoT networks, IoT Operating
	Systems and Security, IoT Forensics. IoT Security Standards.
4	Case Studies: Internet of Vehicles (IoV), Unmanned Aerial Vehicle (UAV) Networks,
	Industrial IoT Networks. Future Research Direction/Opportunity in the IoT Networks
	and Endpoint Security.

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals
- 2. Catherine H. Gebotys, Security in Embedded Devices, ISBN 978-1-4419-1529-0, Springer
- 3. Chwan-Hwa (John) Wu , J. David Irwin, Introduction to Computer Networks and Cybersecurity, CRC Press, 2013
- 4. Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded Systems, A Cyber-Physical Systems Approach, Second Edition, MIT Press, ISBN 978-0-262-53381-2, 2017.
- 5. Fei Hu, Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations, ISBN 9780367574925, 2020, CRC Press
- 6. Namuduri, K., Chaumette, S., Kim, J., & Sterbenz, J., UAV Networks and Communications. Cambridge University Press, 2017
- 7. Nishu Gupta, Arun Prakash, Rajeev Tripathi, Internet of Vehicles and its Applications in Autonomous Driving, ISBN 978-3-030-46334-2, 2021, Springer
- 8. Rajkumar Buyya, Amir Vahid Dastjerdi, Internet of Things Principles and Paradigms, 2016, ISBN 978-0-12-805395-9, Elsevier
- 9. Rajkumar Buyya, Amir Vahid, Internet of Things Principles and Paradigms, Elsevier, 2016.
- 10. Rajkumar Buyya, Satish N Srirama, Fog and Edge Computing: Principles and Paradigms, 2019, ISBN: 978-1-119-52498-4, Wiley
- 11. William Stallings, Cryptography and Network Security: Principles and Practice, Pearson education, 2013.
- 12. Zaigham Mahmood, Connected Vehicles in the Internet of Things: Concepts, Technologies and Frameworks for the IoV, ISBN 978-3-030-36166-2, Springer.

Course	e Code		Course Name		Lectu	Credit Ire/Lab/Se	Split minar/Project	Year of Introduction
M30	2112	Μ	lachine Learnii	ng		3-0-0)-0	2021
Prerequi	sites: Nil			L				1
1. 2.	solutions. To equip t machine l	algor the stu earnir	udents with the ng algorithms/1	e ability techniq	y to ide Jues.	entify and a	nine learning teo malyse problem ning techniques	s solvable with
)) 1	C O1: Algor C O2 : Pro machine l	rithm blem earnir	design/analysi	s capat and a	oility ir analysi	Machine L s skills on	application d	le to: omains requiring
 	PLO 2 Der theoretica PLO 3 App PLO 4 Sho and non-e PLO 5 Pra PLO 6 Acc	monst al natu oly sch ow cor expert ctice e quire p neuria	ure. nolarship to con mmunication sl audiences. ethical standar professional ski l skills, and wri	skills th nduct ii kills in a ds of pi ills such	at are ndepe a varie rofessi n as co	of experim ndent and i ty of forma onal condu llaborative	ental, computation nnovative resea ts (oral, written oct and research skills, ability to	arch.) and to expert
Mappin	-	se out	comes with p		learn			
	PLO1		PLO2	PLO3		PLO4	PLO5	PLO6
CO1	3		2	3		2		
CO2	3		3	3		2		
CO3	2		3	3		2		
(Correla	tion: 1: S	light (Low) 2: Moder	ate (M	edium) 3: Subst	antial (High))	
Syllabus	5:							
Module	Conten	t						
1	Learnin Bayesia	Machine Learning Paradigms: Supervised, Unsupervised and reinforcement Learning. Generalisation performance, Supervised Learning: - Classification - Bayesian, Decision Trees, Artificial Neural Networks, Perceptrons, Multilayer networks, Back-Propagation.						
2	selectio - Cluste	on, fea ering -	ature extractio	n - Prin	cipal (Component	Analysis. Unsu	elevance, feature pervised Learning BIRCH), and Sub-

3		Kernel Machines - Support Vector Machines - Concept of Kernels, Kernel Trick, Support Vector Regression, Support Vector Clustering. Scalability of Kernel Machines - Core Vector Machine
4		Ensemble Learning - AdaBoost and Gradient Boosting, Expectation- Maximization(EM) Algorithm, Sequence Modelling - Hidden Markov Models. Graphical Models - Bayesian Networks.
	Te>	t Books:
	1.	Understanding Machine Learning: From Theory to Algorithms, Shai ShalevShwartz, Shai Ben- David,Cambridge University Press, 2014.
	1.	Introduction to Machine Learning, Third Edition, Ethem Alpaydin, MIT Press, 2014.
	Ref	erences:
	1.	Neural Networks and Learning Machines, Simon Haykin, Person, 2009.
	2.	Mastering Machine Learning Algorithms, Giuseppe Bonaccorso, Ingram short title, 2018.
	2.	Machine learning Hands on for Developers and Technical Professionals, First Edition, Jason Bell, Wiley, 2014.
	3.	Machine Learning: The Art and Science of Algorithms that Make Sense of Data, First Edition,
		Peter Flach, Cambridge University Press, 2012.
	4.	Machine Learning – An Algorithmic Perspective, Second Edition, Stephen Marsland, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
	5.	Machine Learning, First Edition, Tom M Mitchell, McGraw Hill Education, 2013.

M3010284, M3020235 MALWARE ANALYSIS AND REVERSE ENGINEERING

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction	
M301284, M302235	Malware Analysis and Reverse Engineering	3-1-0-0	2021	
Prerequisites: N	il			
Course Objectiv	es:			
=		of various malware types and fam	nilies.	
2. To help t	he students apply tools and t	echniques to detect malware.		
3. To provi	de the students with an und	derstanding of the need for prote	ecting computer	
systems	against malware attacks.			
Course Outcome	es: After completion of this co	ourse, the students would be able t	to:	
	-			
CO1:Ana	lyze Windows, Android,Linux	and IoTmalware types and familie	s.	
CO2 : App	bly tools and techniques to fir	nd out the presence of malware.		
CO3: Und	erstand how malware evades	s detection and develop suitable de	efensive	
		sing machina loarning and other to		

mechanism against malware attacks using machine learning and other techniques.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	1	2	2			
CO2	1	3			3	
CO3	1	2	2			

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:	
Module	Content
1	Android malware analysis: - Introduction to Android malware, Android operating system, Android application components, Android security model, Evolution of Android malware, Android malware types and families, Reverse engineering Android Applications:- Disassembling and Decompiling Android applications, Understanding the source code of Android application, Android security assessment tools. Static Analysis of Android Malware: - Static features for Android malware detection, Permission and Intent analysis, Static API call analysis, Dalvik Opcode analysis. Dynamic Analysis of Android Malware: -Setting up a Sandbox for Android malware analysis, Dynamic analysis of Android malware using API calls, system calls and network packets. Investigating Android malware evasion and current trends in Android malware detection, Investigating Android malware obfuscation, Machine learning for Android malware detection using static and dynamic features. Investigating adversarial malware evasion in Android malware detection mechanisms, Investigating adversarial Android malware creation techniques.
2	Windows malware analysis: - Introduction to Windows Malware, Windows operating system, Windows malware types and families, Reverse engineering Windows Applications: - Disassembling Windows applications, Debugging Windows applications, Decompiling Windows applications, Static analysis of Windows malware: - Analysing Win API and Windows internals. Analysing Windows PE files, Dynamicanalysis of Windows malware: - Setting up a VM for Windows malware analysis, Process monitoring for dynamic analysis of Windows malware, Windowsregistrymonitoring, Windows network protocol analysis. Investigating Windows malware obfuscation, Machine learning for Windows malware detection using static and dynamic features. Investigating the effectiveness of deep learning for detecting malware from raw PE files. Investigating adversarial malware evasion in Windows malware detection mechanisms, Investigating adversarial Windows malware creation techniques.

3	Linux malware analysis:- Types of Linux malware, Reverse Engineering Linux malware:- Disassembling and debugging the binaries, Examining the memory snapshots, Abusing macros such as unlink() and frontlink(), Static and Dynamic analysis of Linux malware, Investigating the security of Linux kernel against malware attacks, Machine Learning for linux malware detection, Investigating adversarial
	malware evasion in Linux malware detection mechanisms, Investigating adversarial Linux malware creation techniques.
4	IoT malware analysis: -IoT malware types and families, Reverse Engineering IoT malware: - Reverse engineering IoT firmware. IoT implant toolkit for malware implantation, Implantation of Trojans in smart speakers and camera. Static analysis of IoT malware: - Static analysis based on function call graph, strings and elf structure. Dynamic analysis of IoT malware: - Detecting IoT malware using network traffic analysis, IoT botnet detection. Machine learning for IoT malware detection using static and dynamic features, IoT malware obfuscation, Investigating adversarial malware evasion in IoT malware detection mechanisms, Investigating adversarial IoT malware creation techniques.

Text Books:

- 1. Alexey Kleymenov , AmrThabet , Mastering Malware Analysis: The complete malware analyst's guide to combating malicious software, APT, cybercrime, and IoTattacks ,2019.
- 2. Monappa KA, Learning Malware Analysis: Explore the concepts, tools, and techniques to analyze and investigate Windows malware, Packt Publication, 2018.
- 3. Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein , Adversarial Machine Learning, Cambridge University Press, 2019.
- 4. Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches in Cybersecurity Analytics, Springer 2020.
- 5. Dunham Ken, Android Malware and Analysis, Auerbach Publications; 1 edition, 2014.

References:

- 1. Clarence Chio, David Freeman, Machine Learning & Security, O Reilly, 2018
- 2. Xiang Fu, Malware Analysis Tutorials: A Reverse Engineering Approach, Online

M3010102 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

Course	Course Name	Credit Split	Year of			
Code		Lecture/Lab/Seminar/Project	Introduction			
M301102	Mathematical	3-0-1-0	2021			
	Foundation of					
	Computer Science					
Prerequisites: Nil						
Course Obje	ectives:					
algebra,	-	nderstanding of the essential concepts , random variables, optimization techni	• •			

2. To help the students develop the ability to solve problems using the learned concepts.

3. To connect the concepts to various topics in computer science.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Understand the mathematical foundations of computer science, artificial intelligence, cyber security and connected systems.

CO2: Analyze and evaluate critically the appropriate mathematical techniques required for solving various computer sciences and engineering problems.

CO3: Apply various mathematical techniques in computer science and engineering problems.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	2	2		
CO2	1	3	3	2		
CO3	1	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)) Syllabus:

Module	Content
1	Basic Properties of the integers, Divisibility and primality, Congruence, Residue classes, Euler's phi function, Fermat's little theorem Groups, Subgroups, Group homomorphisms and isomorphisms, Cyclic groups, Lagrange's theorem, Field, Galois fields
2	Matrices, Systems of Linear Equations, Solving Systems of Linear Equations, Eigenvalues and Eigenvectors, Cholesky Decomposition Eigen decomposition and Diagonalization, Singular Value Decomposition Vector Spaces, Basis, Linear Mappings, Inner Products, Orthogonality, Orthonormal Basis, Orthogonal Projections, Cauchy Shwartz inequality, Gram Schmidt Orthogonalization, Norms
3	Random Variables, Expectation and variance, Distribution Function, Discrete Random Variables, Continuous Random Variables, Mean and Variance, probability distributions: uniform, Bernoulli, binomial, Poisson, Exponential, and Gaussian, multivariate normal distribution, MAP, MLE Graph terminology and special types of graphs, representation of graphs, Graph

	Isomorphism, Connected Graphs, Eulerian and Hamiltonian graphs, trees, weighted trees
4	Convex sets, convex functions, Linear Optimization, Farkas' lemma, Duality theory, The Simplex method, Convex Optimization, Gradient descent, Non linear optimization, Karush-Kuhn-Tucker conditions, Lagrangian duality Introduction to game theory. Two player games with zero-sum payoffs, Two player games with nonzero-sum payoffs, Nash equilibrium in pure and mixed strategies, basic algorithms to find the Nash equilibrium, dynamic and repeated games, Sequential game.
Refer	ences
	1. I N Herstein, Topics in Algebra, Wiley India, 2nd Edition, 2006
	 Neal Koblitz, A Course in Number Theory and Cryptography, Springer Verlag (low price edition), 2nd Edition, 1994
	3. Kenneth Hoffman, Ray Kunze, Linear Algebra, Prentice-Hall of India Pvt.Ltd
	 Hsu HP. Theory and problems of probability, random variables, and random processes. New York: McGraw-Hill; May 2014.
	5. M. Mignotte, Mathematics for computer algebra, Springer-Verlag, 1992.
	 Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press.
	 Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. 2011. Optimization for Machine Learning. The MIT Press.
	 Bertsimas, D. & Tsitsiklis, J. (1997), Introduction to linear optimization , Athena Scientific .
	9. An Introduction to Optimization- E. Chong, S. Zak, Wiley
	10. Hastie, T.; Tibshirani, R. & Friedman, J. (2001), <i>The Elements of Statistical Learning</i> , Springer New York Inc. , New York, NY, USA .
	11. Donald F. Stanat and David F. McAllister, Discrete mathematics in Computer Science.
	12. Thomas Koshy, Elementary number theory with Applications, Elsevier
	13. G. ChartrandandP. Zhang, Introduction to Graph Theory, McGraw-Hill Companies,
	14. Douglas B. West, Introduction to Graph Theory, Prentice Hall of India.
	 N. Nisan, T. Roughgarden, V. Vazirani and E. Tardos, Algorithmic Game Theory, Cambridge University Press, 2007.
	16. M. J. Osborne and A. Rubinstein, A Course in Gam Theory, The MIT press, 1994.
	17. K. R. Apt and E. Graedel, Lectures in Game Theory for Computer Scientists, Cambridge University Press, 2011.

Course Code	Course Name	Credit Split	Year of			
		Lecture/Lab/Seminar/Project	Introduction			
M202101	Mathematics for Computer Science	3-0-1-0	2021			
Prerequisites:	Nil					
Course Objectives:						

M2020101 MATHEMATICS FOR COMPUTER SCIENCE

es, optimiza	ition							
	arned concepts							
nce, cyber s	ecurity and							
ould be abl	e to:							
er science a	and cyber							
ecurity. D2 : Analyze and evaluate critically the appropriate mathematical techniques								
ecurity prob	olems.							
cience, cyb	er security, and							
, computati	ional, or							
ative resea	rch							
ral, written)	and to expert							
d research;								
, ability to v	vrite grants,							
als if it is tau	ught by faculty							
PLO5	PLO6							
PLO5	PLO6							
PLO5	PLO6							
2LO5	PLO6							
PLO5	PLO6							
	PLO6							
	PLO6							
	PLO6							
	PLO6							
l (High))								
l (High))	PLO6							
l (High)) nality, Cong	ruence, Residu							
l (High)) nality, Cong								
l (High)) nality, Cong omorphism	ruence, Residu s, Cyclic groups							
l (High)) nality, Cong omorphism stems of Li	gruence, Residu s, Cyclic groups							
l (High)) nality, Cong omorphism stems of Li	ruence, Residu s, Cyclic groups							
	er science a matical tech curity prot cience, cyb , computati ative resea al, written) d research; ability to v							

1. To provide students with a good understanding of the essential concepts of number

Vector Spaces, Basis, Linear Mappings, Inner Products, Orthogonality, Orthonormal Basis, Orthogonal Projections, Cauchy Shwartz inequality, Gram Schmidt Orthogonalization, Norms

3		Probability, sample space, events, axioms of probability, conditional probability, independent events, Bayes Theorem, Random Variables, Expectation and variance, Distribution Function, Discrete Random Variables, Continuous Random Variables, Mean and Variance, probability distributions: uniform, Bernoulli, binomial, Poisson, Exponential, and Gaussian, MAP, MLE
4		Graph terminology and special types of graphs, representation of graphs, Graph Isomorphism, Connected Graphs, Eulerian and Hamiltonian graphs, Convex sets, convex functions, Linear Optimization, Farkas' lemma, Duality theory, The Simplex method, Convex Optimization, Gradient descent, Non linearoptimization, Karush-Kuhn-Tucker conditions, Lagrangian duality.
Refere	ence	'S
		I N Herstein, Topics in Algebra, Wiley India, 2nd Edition, 2006
	2.	Neal Koblitz, A Course in Number Theory and Cryptography, Springer Verlag (low
	_	price edition), 2nd Edition, 1994
		Kenneth Hoffman, Ray Kunze, Linear Algebra, Prentice-Hall of India Pvt.Ltd
	4.	Hsu HP. Theory and problems of probability, random variables, and random
	_	processes. New York: McGraw-Hill; May 2014.
		M. Mignotte, Mathematics for computer algebra, Springer-Verlag, 1992.
	6.	Boyd, S. & Vandenberghe, L. (2004), Convex Optimization , Cambridge University
	7.	Press . Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. 2011. Optimization for Machine Learning. The MIT Press.
	8.	Bertsimas, D. & Tsitsiklis, J. (1997), Introduction to linear optimization , Athena Scientific
	9.	An Introduction to Optimization- E. Chong, S. Zak, Wiley
	10	. Hastie, T.; Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning, Springer New York Inc., New York, NY, USA.
	11	. Donald F. Stanat and David F. McAllister, Discrete mathematics in Computer Science.
	12	. Thomas Koshy, Elementary number theory with Applications, Elsevier.
		. G. ChartrandandP. Zhang, Introduction to Graph Theory, McGraw-Hill Companies,
	14	. Douglas B. West, Introduction to Graph Theory, Prentice Hall of India.

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction			
M302343	Mobile Application Security	3-0-0-1	2021			
Prerequisites: Nil						
Course Objective	es:					
• To introduce	the security aspects mobi	le applications				
• To enable the students to perform static and dynamic analysis of Android applications						
• To enable th	e students to perform secu	urity analysis of windows and iOS ap	plications			
Course Outcome	es: After completion of this	s course, the students would be able	e to:			

CO1: Describe the needs and threats of smart phonese curity

CO2: Illustratethearchitecture of and roid and its security

CO3: Analyze the Android virtual device, android memory analysis, and intercepted network traffics

CO4: Examine the decompilation of android and iOS applications, recovering java code from apk.

CO5: ExplainthearchitectureofiOS, jailbreakingandXcode

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1				
CO2	2	1				
CO3	3	3	3			
CO4	2	3	3			
CO5	3	2				

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Smartphone operating systems, importance of smartphone security, different types and categories of mobile applications. History of Android, features of Android, architecture of Android, components of Android - activity, service, content provider, broadcast receiver, fragment, intent, resource.
2	Android security models - app sandboxing, app signing, app permission, data encryption, Securing Android Device. Android SDK -Android SDK tools, Android emulator, Platform tools, Android Debug Bridge (adb), AVD and actual devices, interact with devices, logcat mechanism, Android Studio
3	Mobile vulnerabilities, methods to avoid the vulnerabilities, Features of Android applications, identification of vulnerable features Android applications, Decompiling Android applications, smali files, recovering java code from APK, Android asset packaging tool, risk in Android applications, risk analysis and classification, tools used in mobile malware analysis, Android malware analysis approaches - static analysis, dynamic analysis, network analysis, hybrid analysis.
4	iOS Security Model, Security Model of the Windows Phone Architecture of iOS, jailbreaking, Xcode, File system and device interaction,

decompiling iOS application, Intercepting network traffic.

Text Books:

- 1. Erik Hellman, "Android Programming: Pushing the Limits", Wiley 2013.
- 2. Aditya Gupta, "Learning Pentesting for Android Devices", Packt Publishing (March 26, 2014)
- 3. Donny Walls, "Mastering iOS Programming", Packt Publishing Limited.
- 4. Kunal Relan, iOS Penetration Testing, APress.

References:

- 1. James Edward Keogh, J2ME The Complete Reference McGraw-Hill/Osborne, 2003.
- 2. Erik Hellman, Android Programming: Pushing the Limits, Wiley 2013.
- 3. K. Dunham, Shane Hartman, Manu Quintans, Jose Andre Morales, Tim Strazzere, AndroidMalware and Analysis, CRC Press 2014.
- 4. Jonathan Zdziarski, Hacking and Securing IOS Applications, O'Reilly Media, Inc. 2012.

M3022201 MODERN CRYPTOGRAPHY

Course	Course Name	Credit Split	Year of	
Code	Madawa Cwysta swarby	Lecture/Lab/Seminar/Project 3-1-0-0	Introduction	
M302201	Modern Cryptography	3-1-0-0	2021	
Prerequisites	: A basic understanding of alg	ebra, linear algebra, modular arith	nmetic	
Course Objec	tives:			
• Learn	modern cryptographic algor	rithms, their implementations in	n contemporary	
compi	uting platforms and security ar	nalysis.		
 Analyz 	e countermeasures to thwar	t implementation-level attacks c	on cryptographic	
opera	tions in hardware and software	e		
 Identi 	fy appropriate cryptographic to	echniques for real world application	ons	
Course Outco	mes: After completion of this	course, the students would be at	ole to:	
CO1: /	Apply appropriate cryptograph	ic techniques to solve real-world	problems in	
inform	nation security			
CO2 : <i>A</i>	Analyze the attack surface of a	system in order to realize effective	e mitigation	
measu	ares against threats			
		to create standards-compliant se	cure software	
and ha	ardware systems			
Program Lear	ning Outcomes:			
PLO 1	Develop strong fundamental of	disciplinary knowledge		
PLO 2	Demonstrate research skills th	nat are of experimental, computat	ional, or	
theore	etical nature			
PLO 3	Apply scholarship to conduct i	independent and innovative resea	irch	
PLO 4	Show communication skills in	a variety of formats (oral, written) and to expert	
and no	on-expert audiences;			
PLO 5	Practice ethical standards of p	professional conduct and research	;	
PLO 6	Acquire professional skills suc	h as collaborative skills, ability to	write grants,	

Мар	ping c	of course out	comes with p	orogram learr	ing outcome	s:			
		PLO1	PLO2	PLO3	PLO4	PLO5	PLO6		
C	01	3	3	2	2	1	2		
C	:02	3	3	3	2	1	2		
C	03	2	1	1	2	3	3		
Corr	relatio	on: 1: Slight (L	ow) 2: Mod	erate (Mediu	m) 3: Substa	antial (High))	11		
	bus:				,				
Mod	lule	Content							
		Black Cipha	re DES Triple		lock Ciphor N	ladas Straam	Ciphore BC4		
-			· · ·	е-DES, AES, В БНАЗ, МАС, Н	•	ioues, stream	Ciphers, RC4,		
						0 1			
2				-		lGamal, ECC, L	attice		
			•	man Key Exch	-				
8		Digital Signa	ature Algorith	ims: RSA, DSA	, ECDSA, Dilit	nium, HSS, XN	ASS, XMSSMT,		
•									
					-	•	cc. AIS 31), Tr		
			-	•	•	•	e KMIP and A		
							•		
		Microsoft (interfaces such as PKC#11, MS CNG, MS CAPI, Java Cryptography Extension (JCE) Microsoft Crypto API (CSP), Cryptography Next Generation (CNG) and SQ						
		Extensible K				Infrastructure			
ſext	Book	Extensible K							
		Extensible K s:	(ey Managem	nent (SQLEKM), Public Key	Infrastructure	<u>(</u> PKI)		
	. Wi	Extensible K s: Iliam Stalling	(ey Managem	nent (SQLEKM), Public Key	Infrastructure			
1	L. Wi Pea	Extensible K s: Iliam Stalling arson	Key Managem gs, Cryptogra	ent (SQLEKM), Public Key etwork Secu	Infrastructure rity: Principle	(PKI) es and Practio		
1	L. Wi Pea 2. Jea	Extensible K s: Iliam Stalling arson in-Philippe Au	Key Managem gs, Cryptogra umasson, Sei	nent (SQLEKM aphy and No rious Cryptog), Public Key etwork Secu	Infrastructure rity: Principle	<u>(</u> PKI)		
1 2	L. Wil Pea 2. Jea End	Extensible K s: lliam Stalling arson n-Philippe Au cryption, No S	Key Managem gs, Cryptogra umasson, Sei Starch Press, S	aphy and No rious Cryptog 2017), Public Key etwork Secu raphy: A Pra	Infrastructure rity: Principle ctical Introdu	(PKI) es and Praction ction to Mode		
1 2 3	I. Wi Pea 2. Jea Eno 3. Dav	Extensible K s: arson In-Philippe Au cryption, No S vid Wong, Rea	Sey Managem s, Cryptogra umasson, Sei Starch Press, S al-World Cryp	aphy and Na rious Cryptog 2017 otography, M), Public Key etwork Secu raphy: A Pra anning Public	Infrastructure rity: Principle ctical Introdu ations, July 20	(PKI) es and Praction ction to Mode 221		
1 2 3	L. Wil Pea 2. Jea End 3. Dav 1. Sur	Extensible K s: Iliam Stalling arson In-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A	Sey Managem s, Cryptogra umasson, Sei Starch Press, S al-World Cryp Anil Kumar,	aphy and No rious Cryptog 2017 Dtography, M Ned Smith, E), Public Key etwork Secu raphy: A Pra anning Public David M. Whe	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst	(PKI) es and Practio ction to Mode 021 ifying Internet		
1 2 3	L. Wil Pea 2. Jea Eno 3. Dav 1. Sur Thi	Extensible K s: Iliam Stalling arson In-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A ngs Security:	Sey Managem ss, Cryptogra umasson, Sei Starch Press, S al-World Cryp Anil Kumar, Successful	aphy and Na rious Cryptog 2017 Dtography, M Ned Smith , E IoT Device/E), Public Key etwork Secu raphy: A Pra anning Public David M. Whe	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst	(PKI) es and Praction ction to Mode 221		
1 2 3 4	L. Wil Pea End B. Dav I. Sur Thi Ap	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A ngs Security: ress; 1st ed. e	Sey Managem s, Cryptogra umasson, Sei Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus	aphy and No rious Cryptog 2017 Dtography, M Ned Smith , E IoT Device/E st 14, 2019)), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit	(PKI) es and Praction ction to Mode 221 ifying Internet cy Deployment		
1 2 3 4	L. Wil Pea End B. Dav B. Sur Thi Apt 5. Ste	Extensible K s: Iliam Stalling arson In-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A ngs Security: ress; 1st ed. e fan Rass , E	Sey Managem ss, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama	aphy and Na rious Cryptog 2017 Dtography, Ma Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit	(PKI) es and Practio ction to Mode 021 ifying Internet		
1 2 3 4 5	L. Wil Pea End B. Dav I. Sur Thi Apt 5. Ste Cor	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte	Sey Managem gs, Cryptogra umasson, Sei Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1	aphy and Na rious Cryptog 2017 Ded Smith , E Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog November 20), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit ecurity and I	(PKI) es and Practic ction to Mode 221 ifying Internet cy Deployment Privacy in Clor		
1 2 3 4 5 6	L. Wil Pea End B. Dav B. Sur Thi Apt 5. Ste Cor 5. B. S	Extensible K s: lliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A ngs Security: ress; 1st ed. e fan Rass , E mputing, Arte Singhal, G. Dh	Sey Managem ss, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa	aphy and No rious Cryptog 2017 Dotography, Ma Ned Smith, E IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst tform Securit ecurity and I n, Apress, 201	(PKI) es and Practic ction to Mode 21 ifying Internet cy Deployment Privacy in Clor 8		
1 2 3 4 5 6	L. Wil Pea End 3. Dav 4. Sur Thi Api 5. Ste Coi 5. B. S 7. Na	Extensible K s: lliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu , A ngs Security: ress; 1st ed. e fan Rass , E mputing, Arte Singhal, G. Dh rayanan et a	Sey Managem gs, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin	aphy and Na rious Cryptog 2017 Dotography, Ma Ned Smith, E IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Cryptog), Public Key etwork Secu raphy: A Pra anning Public David M. Whe dge and Pla graphy for S 13 ng Block chair currency Tec	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst tform Securit ecurity and I n, Apress, 201	(PKI) es and Practic ction to Mode 221 ifying Internet cy Deployment Privacy in Clor		
1 2 3 4 5 6 7	L. Wil Pea End B. Dav B. Sur Thi Ap 5. Ste Cor 5. B. S V. Na Int	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte Singhal, G. Dh rayanan et a roduction," P	Sey Managem gs, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin	aphy and Na rious Cryptog 2017 Dotography, Ma Ned Smith, E IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Cryptog), Public Key etwork Secu raphy: A Pra anning Public David M. Whe dge and Pla graphy for S 13 ng Block chair currency Tec	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst tform Securit ecurity and I n, Apress, 201	(PKI) es and Practic ction to Mode 21 ifying Internet cy Deployment Privacy in Clor 8		
1 2 3 4 5 6 7	L. Wil Pea End 3. Dav 4. Sur Thi Api 5. Ste Coi 5. B. S 7. Na	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte Singhal, G. Dh rayanan et a roduction," P	Sey Managem gs, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin	aphy and Na rious Cryptog 2017 Dotography, Ma Ned Smith, E IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Cryptog), Public Key etwork Secu raphy: A Pra anning Public David M. Whe dge and Pla graphy for S 13 ng Block chair currency Tec	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst tform Securit ecurity and I n, Apress, 201	(PKI) es and Practic ction to Mode 21 ifying Internet cy Deployment Privacy in Clor 8		
1 2 3 4 5 6 7 Refe	L. Wil Pea End 2. Jea End 3. Dav 4. Sur Thi Apt 5. Ste Cor 5. B. S 7. Na Intr rence	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, J ngs Security: ress; 1st ed. e fan Rass, E fan Rass, E fan Rass, E fanghal, G. Dh rayanan et a roduction," P s:	Sey Managem s, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin rinceton Univ	aphy and Na rious Cryptog 2017 otography, Ma Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog November 20 anda, Beginni and Cryptog versity Press, S), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016.	Infrastructure rity: Principle ctical Introdu ations, July 20 seler , Demyst tform Securit ecurity and I n, Apress, 201	(PKI) es and Practic ction to Mode 21 ifying Internet cy Deployment Privacy in Clor 8		
1 2 3 4 5 6 7 7 Refe 1. A	L. Wil Pea End 2. Jea End 3. Dav 1. Sur Thi Apr 5. Ste Cor 5. B. S 7. Na Intr 7. Na	Extensible K s: Iliam Stalling arson In-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte Singhal, G. Dh rayanan et roduction," P s: Meijer, Alge	Sey Managem ss, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin rinceton Univ	aphy and Ne rious Cryptog 2017 Dotography, Ma Ned Smith, C IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Crypto versity Press, Sprin), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016.	Infrastructure rity: Principle ctical Introdu- ations, July 20 eeler, Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A	(PKI) es and Practio ction to Mode 221 ifying Internet cy Deployment Privacy in Clou 8 Comprehensi		
1 2 3 4 5 7 Refe 1. A 2. R	L. Wil Pea End S. Jea End S. Dav I. Sur Thi App 5. Ste Cor 5. B. S Cor 5. B. S Cor 5. B. S Cor 5. B. S Cor 5. Na Intr rence	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, J ngs Security: ress; 1st ed. e fan Rass, E	Sey Managem s, Cryptogra umasson, Sei Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin rinceton Univ bra for Crypto ecurity Engin	aphy and Ne rious Cryptog 2017 Dotography, Ma Ned Smith, C IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Crypto versity Press, Sprin), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016.	Infrastructure rity: Principle ctical Introdu- ations, July 20 eeler, Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A	(PKI) es and Practic ction to Mode 21 ifying Internet cy Deployment Privacy in Clor 8		
1 2 3 4 5 6 7 Refe 1. A 2. R S	L. Wil Pea End 2. Jea End 3. Da 4. Sur Thi App 5. Ste Con 5. Ste Con 5. B. S 7. Na Intr Frence Alko R. Ross A	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte Singhal, G. Dh rayanan et roduction," P s: Meijer, Algel Anderson, Se as, Wiley, 202	Sey Managem s, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 nameja, P S Pa al., "Bitcoin rinceton Univ bra for Crypto ecurity Engin 0	aphy and Ne rious Cryptog 2017 otography, Me Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog November 20 anda, Beginni and Cryptog versity Press, ologists, Sprin eering: A G), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016.	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A ding Depend	(PKI) es and Practio ction to Mode 221 ifying Internet cy Deployment Privacy in Clor 8 Comprehensi able Distribute		
1 2 3 4 5 7 Refe 1. A 2. R 5 3. T	L. Wil Pea End L. Jea End S. Dav L. Sur Thi App 5. Ste Con 5. B. S Con 5. B. S Con 5. B. S Con 5. B. S Con 5. B. S Con 5. Na Inti Alko R. Ross A System Thoma	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E	Sey Managem s, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 bameja, P S Pa al., "Bitcoin rinceton Univ bra for Crypto ecurity Engin O ske, A Begin	aphy and Na rious Cryptog 2017 otography, Ma Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog November 20 anda, Beginni and Crypto versity Press, ologists, Sprin beering: A G), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016.	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A ding Depend	(PKI) es and Practio ction to Mode 221 ifying Internet cy Deployment Privacy in Clou 8 Comprehensi		
1 2 3 4 5 6 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	L. Wil Pea End 2. Jea End 3. Dav 3. Dav 3. Sur Thi App 5. Ste Con 5. S. Ste Con 5. S. Ste Con 5. S. Ste Con 5. Ste Ste Con 5. Ste Con 5. Ste Ste Ste Ste Ste Ste Ste Ste Ste Ste	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E	Sey Managem s, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, Successful edition (Augus Daniel Slama ech House (1 hameja, P S Pa al., "Bitcoin rinceton Univ bra for Crypto ecurity Engin O ske, A Begin tical Society,	aphy and Na rious Cryptog 2017 otography, Ma Ned Smith , E IoT Device/E st 14, 2019) nig , Cryptog November 20 anda, Beginni and Cryptog versity Press, ologists, Sprin eering: A G aner's Guide, 2017), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016. nger, 2016 uide to Buil Modern Cry	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A ding Depend otography and	(PKI) es and Practio ction to Mode 221 ifying Internet cy Deployment Privacy in Clor 8 Comprehensi able Distribute d Elliptic Curve		
1 2 3 4 5 6 7 7 8 8 6 7 7 8 8 7 8 7 8 7 8 7 8 7 8	L. Wil Pea End L. Jea End S. Dav Thi Alko Sur Con S. Ste Con S. Ste S. St	Extensible K s: Iliam Stalling arson in-Philippe Au cryption, No S vid Wong, Rea nil Cheruvu, A ngs Security: ress; 1st ed. e fan Rass, E mputing, Arte Singhal, G. Dh rayanan et roduction," P s: Meijer, Algel Anderson, Se ns, Wiley, 202 is R. Sheman can Mathema ell and D. Van	Sey Managem ss, Cryptogra umasson, Ser Starch Press, S al-World Cryp Anil Kumar, : Successful edition (Augus Daniel Slama ech House (1 bameja, P S Pa al., "Bitcoin rinceton Univ bra for Crypto ecurity Engin 0 ske, A Begin tical Society, Duren, "Prace	aphy and Ne rious Cryptog 2017 otography, Me Ned Smith, E IoT Device/E st 14, 2019) nig, Cryptog November 20 anda, Beginni and Crypto versity Press, ologists, Sprin eering: A G mer's Guide, 2017 ctical Internet), Public Key etwork Secu raphy: A Pra anning Public David M. Whe Edge and Pla graphy for S 13 ng Block chair currency Teo 2016. nger, 2016 uide to Buil Modern Cryp Fof Things Sec	Infrastructure rity: Principle ctical Introdu ations, July 20 eeler , Demyst tform Securit ecurity and I n, Apress, 201 chnologies: A ding Depend	(PKI) es and Pract ction to Mod 21 ifying Interne 27 Deploymer Privacy in Clo 8 Comprehens able Distribu d Elliptic Curv Publishing, 20		

design: build your own digital communication system in five easy steps,"Cambridge University Press, 2011

- 6. A. Antonopoulos, "Mastering Bitcoin: Unlocking Digital Cryptocurrencies," O'Reilly, 2014.
- 7. T. Alpcan and T. Basar, "Network Security: A Decision and Game-theoretic Approach," Cambridge University Press, 2011

M3010115, M3021373, M3020373 NATURAL LANGUAGE PROCESSING

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Projec t	Year of Introduction			
M301115, M302373	Natural Language Processing	3-0-0-1	2021			
Prerequisites: Prior knowledge of Python, Probability and Statistics and Machine Learning						

Course Objectives:

- 1. To introduce the fundamental concepts of Natural Language Processing.
- 2. To impart the principles, concepts and theory behind Language Modeling from an algorithmic point of view.
- 3. To get insights into the conceptual and application levels of Natural Language Processing.

Course Outcomes:

Upon successful completion of this course, students will be able to:

- **C01**: understand the fundamental theories and application levels of Natural Language Processing.
- **C02**: Develop language models based on the practical knowledge acquired from the subject ٠ area.
- **C03**: Understand the latest advancements and research opportunities within this domain.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1	1	2		
CO2	2	2	2	2	1	1
CO3	2	2	1	2	2	2

•	:Natural Language Processing
Modul e	Content
1	Introduction to Natural Language Processing : History of NLP - Study of Human Languages, The problem of ambiguity and uncertainty in language, Phases of Natura Language analysis – Syntax – Semantics and Pragmatics, Domain-specific NLF Applications.
	Language Modeling: Defining language models - Corpus, Token, and Lexicon Probabilistic Language Modeling, n-gram models. Word Level Analysis: Regular Expressions- Finite-State Automata- Morphological Parsing, Syntactic Analysis: Parsing - Constituency Grammar - Dependency Grammar - Context Free Grammar, Semantic Analysis: Elements of Semantic Analysis - Meaning Representation - Lexical Semantics.
2	NLP using Python- Getting started with NLTK, Tokenization, Stemming, Lemmatization Morphological Segmentation, Chunking, Stop Word Removal, Named Entity Recognition.
	Parts-of-Speech (POS) Tagging - Rule-based POS Tagging, Stochastic POS Tagging and Transformation-based Tagging, Probabilistic Approaches for POS Tagging- Hidder Markov Model (HMM) - Viterbi algorithm and Conditional Random Fields(CRF), Word Sense Disambiguation(WSD).
3	Applications of NLP: Information Retrieval, Text Categorization and Summarization Sentiment Analysis, Topic Modeling- LDA, Machine Translation - Statistical Machine Translation (SMT) - Rule-Based Machine Translation (RBMT) – Hybrid Machine Translation and Neural Machine Translation (NMT), Dealing with Multiliguality Machine learning of cross-lingual mappings, Learning representations using cross- lingual supervision, Challenges in using NLP with multilingual resources.
	Spam filtering: Existing NLP models - N-gram modeling- Word Stemming - Bayesiar Classification, Statistical Learning Methods, Topic Modeling - Latent Semantic Analysis (LSA) - Overview - Singular Value Decomposition (SVD), Latent Dirichlet Allocation (LDA).
4	NLP using Deep Learning: Introduction to Word Vectors and Word Senses, Matrix Calculus and Back Propagation, Dependency Parsing, Recurrent Neural Networks and Language Models, Convolutional Neural Networks for NLP, Developing Chatbots Future of NLP and Deep Learning, Linguistic Theories, Cognitive Modeling and Psycholinguistics. Understanding Application development using NLP - Question Answering, Social Networks, and Agent Communication.
Books aı	nd other resources:
2. Emily from	ent Publications from top-Tier Conferences and Journals. y M. Bender, Linguistic Fundamentals for Natural Language Processing: 100 Essentials Morphology and Syntax, ISBN-13 : 978-1627050111, Morgan and Claypool Life Inces, 2013
3. Gran	it S. Ingersoll, Thomas S. Morton, Drew Farris, Taming Text: How to Find, Organize, and ipulate It, ISBN-13 : 978-1491981658, O'Reilly Media; 2017

4. Hobson Lane, Hannes Hapke, Cole Howard, Natural Language Processing in Action:

Understanding, analyzing, and generating text with Python, ISBN-13: 978-1617294631, Manning Publications, 2019.

- 5. Jacob Eisenstein, Introduction to Natural Language Processing, ISBN-13 : 978-0262042840, The MIT Press, 2019
- 6. NitinIndurkhya and Fred J. Damerau, Handbook of Natural Language Processing, Second Edition, Taylor and Francis, ISBN-13: 978-1420085921, 2010
- 7. Palash Goyal, Sumit Pandey, Karan Jain, Deep Learning for Natural Language Processing-Creating Neural Networks with Python. ISBN-13: 978-1-4842-3684-0, Apress, 2018
- 8. Rada Mihalcea, Dragomir Radev, Ann Arbor, Graph-based Natural Language Processing and Information Retrieval, Cambridge University Press. doi:10.1017/CBO9780511976247
- 9. Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, ISBN-13 : 978-1492054054, O'Reilly Media, 2020
- 10. Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python Analyzing Text with the Natural Language Toolkit, O'Reilly Media, ISBN: 978-0-596-51649-9, 2009.
- 11. Tomek Strzalkowski, Natural Language Information Retrieval, ISBN 978-90-481-5209-4, Springer.
- 12. Yoav Goldberg, Graeme Hirst, Neural Network Methods for Natural Language Processing, ISBN-13: 978-1627052986, Morgan and Claypool Life Sciences, 2017.

Course Code	Course Na	ame	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction
M301254 Networks and		and	3-0-0-3	2021
System Security			5 6 6 5	
Prerequisite	•	,		
Course Obje	ctives:			
• To ii	mpart a cor	nprehen	sive and in-depth understanding of co	omputer networks,
	•	•	prowsers, mobile platforms, critical infra	•
	ity issues asso		· · ·	,
			to discover security vulnerabilities an	nd design security
			ystems and critical infrastructure.	
			on of this course, the students would be al	nle to:
		-	bugs that pose cyber security threats, ex	
			alizing a cyber attack on such software, an	•
	ugs to mitigat	-		
			scenarios to web browsers, and web serv	vers explain various
	-		cyber attacks on browsers, and servers wit	•
-	in how to mit		•	in existing bugs, and
· ·		•	cyber security holes in standard networkir	a protocols both in
		-		•••
			idard protocols, explain mitigation metho	ous and revisions of
	lards based or	•		utha thunnata and to the
		-	mobile software bugs posing cyber secu	rity threats, explain
	-		explain mitigation techniques.	
CO5:	Articulate th	e urgent	need for cyber security in critical compu	ter systems, critical

M3010254 NETWORK AND SYSTEM SECURITY

infrastructure, networks, and world wide web, and explain various threat scenarios

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3		2	
CO2	3	3	3		2	
CO3	3	3	3		2	
CO4	3	3	3	3	2	2
CO5	3	3	3	3		2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Network Basics, Network Edge, Network Core, Access Networks, Delay, Loss and Throughput, Protocol Layers and their Service Models, Application Layer, Transport Layer, Network Layer, Internet Protocol (IP), IPV4 & IPv6, Routers, Routing algorithms, Data Link Layer, Error Detection and Correction, Address Resolution Protocol (ARP), Ethernet
2	Security Issues in TCP/IP, Https, SSL/TLS, IPsec, BGP Security, DNS Cache poisoning etc, Firewalls, Intrusion Detection, Filtering, DNSSec, NSec3, Distributed Firewalls, Intrusion Detection tools, Threat Models, Denial of Service Attacks, DOS-proof network architecture Security architecture of World Wide Web, Security Architecture of Web Servers, and Web Clients, Web Application Security – Cross Site Scripting Attacks, Cross Site Request Forgery, SQL Injection Attacks, Content Security Policies (CSP) in web, Session Management and User Authentication, Session Integrity
3	Control hijacking attacks – buffer overflow, integer overflow, bypassing browser memory protection, Tools and techniques for writing robust application software, Security vulnerability detection tools, and techniques – program analysis (static, concolic and dynamic analysis, Privilege, access control, and Operating System Security, Exploitation techniques, and Fuzzing, Hardening, Logging, Virtualization, sandboxing, protection of execution space

 Android vs. ioS security model, threat models, information tracking, rootkits, Threats in mobile applications, security vulnerabilities, viruses, Trojans, spywares, and keyloggers and malware detection
 Security issues in SCADA, Security in Cyber Physical System Security, Threat models in SCADA and various protection approaches, Machine learning

Text Books:

- 1. James Kurose and Keith Ross, Computer Networking: A Top-Down Approach, Pearson
- 2. Andrew S. Tanenbaum, Computer Networks 5th Edition, Pearson

approaches for SCADA Security

- 3. William Stallings, Cryptography and Network Security Principles and Practice, Prentice Hall
- 4. VlasiosTsiatsis, Stamatis Karnouskos, Jan Holler, David Boyle, Catherine Mulligan, Internet of Things: Technologies and Applications for a New Age of Intelligence. Elsevier Academic press.
- 5. Zaigham Mahmood, Connected Vehicles in the Internet of Things: Concepts, Technologies and Frameworks for IoV, Springer
- 6. Ian F. Akyildiz, Mehmet Can Vuran-Wireless Sensor Networks. Wiley.
- 7. Wenliang Du. Computer Security: A Hands-on Approach, CreateSpace Independent Publishing, 2017. ISBN-13: 978-1548367947
- 8. Andrew Hoffman, Web Application Security, O'Reilly Media, Inc., 2020
- 9. Pascal Ackerman, Industrial Cybersecurity: Efficiently secure critical infrastructure systems, Packt Publishing Limited , 2017
- 10. Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches in Cybersecurity Analytics, Springer 2020.

References:

- 1. Peterson L.L, Davie B.S, Computer Networks, A systems approach, 3/E, Harcourt Asia, 2003
- 2. Keshav S., An Engineering Approach to Computer Networking, Pearson Education, 2000.
- 3. Shinde S.S, Computer Network, New Age International, 2009
- 4. Pethuru Raj and Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases, CRC Press.
- 5. Adrian McEwen, Designing the Internet of Things, Wiley, 2013.

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/	Year of Introduction				
		Project					
M302393	Object Oriented Analysis and Design	3-0-0-1	2021				
Prerequisites: N	Prerequisites: Nil						
Course Objectives:							

M3020393 OBJECT-ORIENTED ANALYSIS AND DESIGN

- To teach the concepts of object oriented design
- To enable the students to construct run time architecture of a system using deployment diagrams

Course Outcomes: After completion of this course, the students would be able to:
 CO1: Illustrate the use of UML for object oriented analysis and design
 CO2: Apply concepts of a system by doing use case analysis.
 CO3:Sketchinteraction diagrams of a given system
 CO4: Choose appropriate design elements for architectural analysis.
 CO5: Construct run time architecture of a system using deployment diagrams.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research **PLO 4** Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1				
CO2	2	1		1		
CO3	3	3	3			
CO4	2	3	3	1		
CO5	3	2				

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:					
Module	Content				
1	OOSE: Best Practices in Software Engineering, Iterative model, Unified ModelingLanguage ObjectOrientation:ObjectOrientedModeling,IntroductiontoUML,FeaturesofObject Orientation, Abstraction, Encapsulation, Hierarchy, ModularityRelationships: Association, Dependency, Generalization, Multiplicity,Aggregation,Modeling class				
2	OOAD Requirement Analysis: UseCasemodel, Flow of Events, Actors, Analysisand Design Overview, Design MechanismUsecase Analysis: Use case Realization,AnalysisClasses,BoundaryClasses, Control Classes, EntityClasses InteractionDiagrams:SequenceandCollaborationDiagrams,ActivityDiagrams,Activit y States, State Chart Diagrams,Synchronization bars, ClassDiagrams,Process and				

	Threads					
3	Design Elements:Design classes, Subsystems, Interfaces, Packages,					
	LayeringDesignElements,BusinessandDataLayer,IdentifyDesignMechanism-					
	DesignPattern,Frame works					
	ArchitecturalAnalysis:ArchitectureandDesignImplementation,4+1viewarchitecture					
	,Concurrency,Synchronization,Collaborations,Componentdiagrams,PLayeredAppr					
	oach, Architectural Mechanism					
4	RuntimeArchitecture:ConcurrencyMechanism,DistributionofmodelElements,Distri					
	bution Patterns, OORDBMS Deployment Diagram: Distribution					
	diagrams, runtimearchitecture, concurrency, configurations, process, nodes, networ					
	ks, Deploymentdiagrams.					
Text Boo	oks:					
1.						
	yBooch,JamesRambaugh,IvarJacobson,TheUnitedModelingLanguageUserGuid blished byAddison-Wesley, 2005					
2. Jame	esRambaugh et.al., ObjectModelingandDesign PrenticeHall,1991					
Referen	ces:					
1 Moil	lierPagelones Eundamentals of Object Oriented Designing IMI Pears on Education					

- 1. MeilierPageJones,FundamentalsofObjectOrientedDesigninUML,PearsonEducation, Asia, 2002
- 2. Ivar Jacobson,The Road totheUnifiedSoftwareDevelopmentProcess,CambridgeUniversityPress, 2000.

M2020203 OPERATING SYSTEMS

Course Code		Course Name	Credit Split Lecture/Lab/Seminar/ Project	Year of Introduction			
M202203		Operating System	3-0-0-0	2021			
Prerec	Prerequisites: Nil						
Course	e Objectiv	es:					
1.	 To help students understand the necessity and fundamental concepts of an Operating System. 						
2.	To explore all the important building blocksin an Operating System.						
3.	3. To build practical skills for developing application programming in an Operating System.						
4.	 Explore the different types of Operating Systems in different domains and analyse the security aspects. 						
 Course Outcomes: After completion of this course, the students would be able to: CO1:Analyze various concepts and building blocks associated with Operating System. CO2: Applythe concepts, building blocks, principles and best practicesapplicable to 							

the software development.

CO3:Illustrate security aspects in Operating System through its predefined features. **CO4:**Design application programmingwith multi-processing concepts.

CO5:Analyze different types of Operating Systems available and develop applications.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3			2	
CO2	2	3	3		3	3
CO3		3			3	3
C04	2	3	3		3	3
C05	3	3	3		3	3

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	OS services, system calls, types, system programs, design and implementation, system structure, debugging, system boot, process concept, IPC(inter process communication), client-server systems, multithreaded programming, symmetric multiprocessing (SMP), process scheduling, Linux Scheduling, Windows Scheduling, Process Migration, Distributed Global States, Distributed Mutual Exclusion, Distributed Deadlock, Linux & Android inter process communication and concurrency mechanisms, scheduling criteria, algorithms, thread scheduling, multiple processor scheduling, exercises Process: process states, process description, process control, synchronization, mutual exclusion, semaphores, synchronization monitors, conditional variables, deadlock.
2	Contiguous memory allocation, paging, segmentation, virtual memory, demand paging, structure of page table, page replacement, thrashing, exercises File concepts, access methods, file system structure, implementation, mounting, file sharing, allocation methods, free space management, NFS(network file system), disk structure, scheduling, management, swap space management, RAID file systems, I/O systems, distributed file systems, exercises - demand paging, Ext4

	filesystems.					
	Characteristics of Embedded Systems, Embedded Linux, and Application specific					
	OS. Basic services of NACH Operating System, Principles of protection, domain of					
	protection, access matrix, access control, language based protection, program					
	threats, system and network threats, user authentication, implementing security					
	defenses, firewalling, exercises - man-in-the middle attacks.					
3	FreeRTOS: architecture, distribution, management of heap memory, task, queue,					
	software timer, interrupt, resource management, memory management, task					
	notification, low power support, porting, FreeRTOS+, FreeRTOS Labs, Exercises.					
4	Linux commands, kernel architecture, memory management, virtual process					
	memory, locking, IPC in Linux, system programming with device drivers, kernel					
	modules, kernel threads, virtual file system, extended filesystem, networks,					
	system calls, interrupts, time management, boot methods, SELinux, Raspberry pi,					
	Exercises - Build Linux kernel for Raspberry Pi and board bring up.					

Text Books:

1.

William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8th Edi tion, 2014.

2.

Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, Jo hn Wiley & Sons ,Inc., 9th Edition,2012.

- 3. Qing Li, Carolyn Yao, Real-Time Concepts for Embedded Systems.
- 4. Richard Barry, Mastering the FreeRTOS[™] Real Time Kernel -A Hands-On Tutorial Guide.
- 5. Wolfgang Mauerer, Professional Linux[®] Kernel Architecture.

References:

- 1. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, Linux in a nutshell, Sixth edition.
- 2. Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, 3rd Edition.
- 3. Frank Mayer, Karl MacMillan, David Caplan, SELinux by Example: Using Security Enhanced Linux.

Web References:

- 1. <u>https://freertos.org/FreeRTOS-Plus/index.html</u>
- 2. <u>http://www.sl2.hu/sexample.pdf</u>
- 3. <u>https://tldp.org/LDP/lkmpg/2.6/lkmpg.pdf</u>
- 4. <u>https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code</u>
- 5. <u>https://www.omscs-notes.com/operating-systems/distributed-file-systems/</u>
- 6. <u>https://searchstorage.techtarget.com/definition/RAID</u>
- 7. <u>https://www.unf.edu/public/cop4610/ree/Notes/PPT/PPT8E/CH15-OS8e.pdf</u>
- 8. <u>https://people.cs.rutgers.edu/~pxk/416/notes/content/21-crypto-slides.pdf</u>
- 9. <u>https://www.jigsawacademy.com/blogs/cyber-security/symmetric-and-asymmetric-key-cryptography</u>
- 10. <u>https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf</u>
- 11. http://www.cs.unca.edu/~bruce/Fall14/360/RPiUsersGuide.pdf

12. https://www.raspberrypi.org/help/

M3020354 OPTIMIZATION TECHNIQUES

Course (Code	Course Name	2	Credit Lecture/Lab/S	eminar/Projec	Year of Introduction
M3023	54	Optimization Techniques		3-0-	0-1	2021
Prerequi	sites: Nil					
 To prodescr To he To construction To construction Course O CO1:Und CO2: Ana CO3: Desersion Program PLO 1 Desersion PLO 2 Desersion PLO 2 Desersion PLO 3 App PLO 4 Shower PLO 5 Praction PLO 5 Praction PLO 6 Action 	ibed in the lp the stud nnect the iques such utcomes: A erstand the lyze and ev ign and den eport, prese Learning C velop stror monstrate ply scholar ow commu- idiences. actice ethic quire profe neurial skill	syllabus. ents develop the concepts to othe <u>as machine learr</u> After completion e optimization teo valuate critically t monstrate optimi entation.	ability to r domain <u>ning and p</u> of this con- chniquesp he buildin zation teo isciplinary at are of e ndepende a variety o rofessiona n as collab	solve problems both within an attern recognit urse, the stude oroblem and sta ag and integrati chniques throug v knowledge. experimental, co ant and innovati of formats (oral, al conduct and n orative skills, a	a using the learned d without theor ion. nts would be ab te of the art solu on of optimization gh team research omputational, or ve research. written) and to research. bility to write gra	expert and non-
	Of COURSE OF	putcomes with p PLO2	PLO3	PLO4		DLOG
	3	2	3	2	PLO5	PLO6
	3	3	3	2		
	2	3	3	2		
	correlation:	1: Slight (Low)	2: Modera	ate (Medium)	3: Substantial (H	ligh))
Modul e	Content					
1	Optimization - sequences and limits, derivative matrix, level sets and gradients, Taylor series.					
2	Unconstra	ained optimizatio	n - neces	sary and suffici	ent conditions fo	or optima, convex

Text E	Text Books:			
4	Constrained convex optimization projected gradient methods, penalty methods.			
	constraints, optimality conditions.			
3	Constrained optimization - linear and non-linear constraints, equality and inequality			
	quasi Newton methods, conjugate direction methods.			
	sets, convex functions, optima of convex functions, steepest descent, Newton and			

- 1. E. K. P. Chong and S. H. Zak, An Introduction to Optimization, 2nd Edn., Wiley India Pvt. Ltd., 2010.
- 2. D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd Edn., Springer, 2010. **References:**
- 1. Suvrit Sra, Sebastian Nowozin and Stephen J. Wright Optimization for Machine Learning. MIT Press, 2012.
- 1. Roberto Battiti, Mauro Brunato. The LION Way: Machine Learning plus Intelligent Optimization. Createspace Independent Pub, 2014.

Course Code	Course Name	Lecture/Lab/Seminar/Project Credits	ct Year of Introduction 2021	
M102105	Python for Data Science	3-0-0-0		
Prerequisites:	Nil		1	
Course Objectiv	/es:			
 To help 	students learn the proble	em-solving techniques.		
 To help 	students understand the	fundamental concepts of programm	ning using the	
Python	programming language a	nd introduce the basic concepts of 0	Object-Oriented	
program	iming in Python.			
To intro	duce students to the data	abase concepts and simple data scie	ence tools.	
To help	students build practical s	kills for solving problems computati	ionally.	
Course Outcom	es: After completion of t	this course, the students would be a	able to:	
CO1: Ex	plain the basic concepts o	of computational problem solving, a	nd	
procedu	ralandobject-oriented pr	rogrammingparadigms and database	e programming.	
CO2: Use	e algorithms and flowcha	rts to layout the procedure to solve	a problem.	
CO3:Exp	lain the basics of Pythonsu	chasvariables, datatypes, control stru	ictures functions	
		, ,, ,	actures, functions	
	and apply the knowledge	e of python to solve computational p		
CO4:Exp			problems.	
•	lain coding and analyzing	e of python to solve computational p	oroblems. andas, NumPy,	
•	lain coding and analyzing plotlib and understand t	e of python to solve computational p g data with Python using tools like P	oroblems. andas, NumPy,	
and Mat Program Learni	lain coding and analyzing plotlib and understand t ng Outcomes:	e of python to solve computational p g data with Python using tools like P	oroblems. andas, NumPy,	
and Mat Program Learni PLO 1 D	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data anal	problems. andas, NumPy, ytics.	
and Mat Program Learni PLO 1 D PLO 2 D	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data anal tal disciplinary knowledge	problems. andas, NumPy, ytics.	
and Mat Program Learni PLO 1 D PLO 2 D theoreti	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament emonstrate research skill cal nature	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data anal tal disciplinary knowledge	oroblems. andas, NumPy, ytics. ational, or	
and Mat Program Learni PLO 1 D PLO 2 D theoreti PLO 3 A	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament emonstrate research skill cal nature oply scholarship to condu	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data analy tal disciplinary knowledge Is that are of experimental, computa	oroblems. andas, NumPy, ytics. ational, or earch	
and Mat Program Learni PLO 1 D PLO 2 D theoreti PLO 3 A PLO 4 Si	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament emonstrate research skill cal nature oply scholarship to condu	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data analy tal disciplinary knowledge Is that are of experimental, computa	oroblems. andas, NumPy, ytics. ational, or earch	
and Mat Program Learni PLO 1 D PLO 2 D theoreti PLO 3 A PLO 4 St and non	lain coding and analyzing plotlib and understand t ng Outcomes: evelop strong fundament emonstrate research skill cal nature oply scholarship to condu- now communication skills -expert audiences;	e of python to solve computational p g data with Python using tools like P he basics of cybersecurity data analy tal disciplinary knowledge Is that are of experimental, computa	oroblems. andas, NumPy, ytics. ational, or earch n) and to expert	

M1020105 PYTHON FOR DATA SCIENCE

		the departr	utcomes witl	n program lea	arning outco	mes:				
		PLO1	PLO2	PLO3	PLO4	PLO5	PLO6			
	CO1	3								
	CO2	3					1			
	CO3	3								
	CO4	3			2		1			
	(C	orrelation:	1: Slight (Low) 2: Moderat	e (Medium)	3: Substantia	l (High))			
Sy	llabus:									
M	odule	Content								
1		Computatio	nal Problem S	olving. Algorith	nms and Flowd	harts, Introduc	tion to Computer			
		Programmi	ng. Programmi	ng Paradigms	and Programm	ning Languages	. Introduction to			
		Object Orie	nted Programr	ning. Introduc	tion to Databa	se Programmir	ig and Scripting.			
			•	•	•		iction to Python.			
			••	•	•	Programming	Language.			
		•	ations of Pytho							
2				•			perators. Boolean			
				-		cessing, Logica				
		Operations. Functions, Tuples, Dictionaries, and Data Processing. Modules, Packages,								
3		String and List Methods, and Exceptions. The Object-Oriented Approach: Classes, Methods, Objects, and Exception Handling. A brief								
3							ata Science. Tools fo			
			-	-			L. SQL using Python.			
		Data Golerio	e (entraid) sup							
4		Data Handling using NumPy and Pandas. Data Visualization in Python. Simple projects.								
		Case studie								
T -										
Ie:	xt Bool	-	arbach "Intr	aduction to C	omputor Coir	anco Lleing Dut	han. A			
	1.		ional Problen		•	ence Using Pyt	.non: A			
	2	•		0			a and Broblem			
	Ζ.					-	ng and Problem			
	2	-	th Python", N							
			Lott, "Object	•		-	De de Nord			
	4.		• •		•		Pandas, NumPy,			
		and Pytho	on, ISBN-13: 9	7/0-1449519	795, O Reilly I	ivieula.				
					-					
Re	ferenc	es:			-					
Re	ferenc		areia. "Pvtho	on Programm	ing using Pro	oblem Solving	Approach". Oxfor			
Re	ferenc 1.	Reema Th	• •	-	ing using Pro	oblem Solving	Approach", Oxfor			
Re	1.	Reema Th Higher Ed	ucation, 2017	·		-				
Re		Reema Th Higher Ed Bradley N	ucation, 2017 I. Miller, Day	'. vid L. Ranum	Problem Sc	olving with A				
Re	1. 2.	Reema Th Higher Ed Bradley N Structures	ucation, 2017 I. Miller, Dav S Using Pytho	r. vid L. Ranum n, Franklin, B	Problem Sc eedle& Assoc	olving with A ciates, 2011.	gorithms and Dat			
Re	1.	Reema Th Higher Ed Bradley N Structures David D. F	ucation, 2017 I. Miller, Dav S Using Pytho Riley, Kenny A	r. vid L. Ranum n, Franklin, B A. Hunt, "Cor	Problem Sc eedle& Assoc	olving with A ciates, 2011.	gorithms and Dat			
Re	1. 2. 3.	Reema Th Higher Edu Bradley N Structures David D. F Solver", C	ucation, 2017 I. Miller, Day S Using Pytho Riley, Kenny A RC Press, 201	r. vid L. Ranum n, Franklin, B A. Hunt, "Cor 4.	Problem So eedle& Assoc nputational 1	blving with A ciates, 2011. Thinking for th	Approach", Oxfor gorithms and Dat ne Modern Probler			
Re	1. 2.	Reema Th Higher Edu Bradley N Structures David D. F Solver", C Jake Vand	ucation, 2017 I. Miller, Day S Using Pytho Riley, Kenny A RC Press, 201 erPlas, Pytho	y. vid L. Ranum n, Franklin, B A. Hunt, "Cor 4. n Data Scienc	Problem So eedle& Assoc nputational 1 ce Handbook,	blving with Al ciates, 2011. Thinking for th , Github	gorithms and Dat			

M3010234, M3020383 QUANTUM COMPUTING & CRYPTOGRAPHY

Course C	ode	Course Na	me	Lecture/Lal	t Split b/Seminar/ ject	Year of Introduction
M301234	,	Quantum Computing and			3-0-1-0	
M302383		Cryptograp	ohy			
Prerequis	ites: Nil					
Course Ol	ojectives:					
me cry	echanics, /ptograph	quantum com ny described in the	puting, qu e syllabus.	antum mach	ine learning	epts of quantun g, and quantun using the learned
	ncepts.	e students deve	iop the au	inty to solve	problems t	using the learned
		t the concents to	a other dor	nain hoth wit	hin such as	machine learning
		ognition and crypt			init such us	
P		0	- 0 1 7			
Course Ou	utcomes:	After completion	of this cour	se, the studer	nts would be	able to:
		the concepts of q				
CC)2 : Analyz	e the use of quar	ntum algorit	hms for mach	ine learning p	problems.
CC)3: Applyi	ng quantum crypt	tography for	securing data	and commu	nication.
Program I	Learning	Outcomes:				
PL the PL an	O 2 Demo eoretical O 3 Apply O 4 Show d non-exp	lop strong fundan onstrate research nature scholarship to co communication s pert audiences; ice ethical standa	skills that an onduct indep skills in a van	re of experime bendent and ir iety of format	ntal, comput novative res s (oral, writte	earch en) and to expert
		ire professional sk	•			
	-	urial skills, and wr				- ·
	the depai			or conclury jo		
	•	outcomes with p	rogram lea	ning outcome	es:	
[]						
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2	2	2
CO2	3	3	3	2	2	
CO3	2	3	3	2	2	2
(Co	orrelation	: 1: Slight (Low)	2: Moderate	e (Medium)	3: Substantial	(High))
synabus.						
Module	Content	:				
1		ts of quantum me ng, Adiabatic Theo				ertainty Relations ace, Unitary and

	stochastic dynamics, Density Matrix Representation and Mixed States,
	Probabilities and measurements, Composite Systems and Entanglement, Density
	operators and correlations, Classical Computation Models and Quantum Gates
2	Quantum bits – qubits, Combining qubits using the tensor product, Measuring
	qubits, Performing operations on qubits, Classical gates versus quantum gates,
	Quantum Circuit, Quantum No Cloning Theorem and Teleportation , The Bloch
	Sphere representation, Adiabatic Quantum Computing, Deutsch's Algorithm,
	Deutsch-Jozsa Algorithm, Simon's periodicity algorithm, Grover's search
	algorithm, Shor's Factoring algorithm
3	Quantum Computing in Clustering, Quantum Principal Component Analysis,
	Quantum K-Means, Quantum K-Medians, Quantum Hierarchical Clustering,
	Quantum Neural Networks, Quantum Pattern Recognition, Quantum Associative
	Memory, Quantum Perceptron, Quantum Neural Networks, Quantum Classifi
	cation, Support Vector Machines with Grover's Search,
4	Key distribution with a limited Eve and perfect Bob , Key distribution with noise
	on the channel , Quantum key distribution, BB84 Protocol, Purifying protocols
	using entanglement, Security from a guessing game, Authentication, Device-
	independent quantum cryptography Security from quantum uncertainty,
	Quantum computing in the cloud, Sharing a quantum secret, Secure computations
	on a remote quantum computer, Practical realization of a quantum computer

Text Books:

- 1. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information , Cambridge University Press, 2000
- 2. Mikio Nakahara and Tetsuo Ohmi, "Quantum Computing", CRC Press (2008).
- 3. Michele Mosca, An Introduction to Quantum. Computing, Oxford U. Press, New York, 2007.
- 4. Peter Wittek, Quantum Machine Learning, Academic Press; Reprint edition, 2016

References:

- 1. M. Le Bellac , A Short Introduction to Quantum Information and Quantum Computation", Cambridge University Press, 2006
- 2. P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing. Oxford, 2007.
- 3. Peres, Asher, Quantum Theory: Concepts and Methods. New York, NY: Springer, 1993. ISBN: 9780792325499.
- 4. Presskil Lecture notes. Available online: http://www.theory.caltech.edu/~preskill/ph229/.
- 5. N. David Mermin, Quantum Computer Science, Cambridge University Press 2007

M3010215, M3020363 SECURE SOFTWARE ENGINEERING

Course Code		Course Name		Lecture/ P	edit Split Lab/Seminar/ Project	Year of Introduction	
M3012 M3023	-	Secure Software	Secure Software Engineering		-0-0-1	2021	
Prerequis		il					
Course O	bjectiv	es:					
		tudents understar				•	
		duce the funda	amental co	ncepts and	methods of	Secure Software	
	evelopr						
		practical skills for		-			
	-	he different softw	vare vulnerat	pilities and att	tack patterns to	handle the recen	
•		s in this domain.					
		es: After completion				able to:	
		lyze various securi					
		ly secure softwar	-		rinciples and be	st	
•		applicable to the s					
		trate security risks		-			
		gn software solut		-		-	
		lyze security vulne		software's an	d applications a	nd model	
de	efensive	e countermeasure	s.				
-		ng Outcomes:					
		velop strong fund			-		
		monstrate resear	ch skills that	are of experii	mental, comput	ational, or	
-		al nature					
	•	ply scholarship to		•			
		ow communicatio		ariety of form	hats (oral, writte	en) and to expert	
		expert audiences;			luct and recent		
		actice ethical stan	•				
		quire professional				•	
		neurial skills, and	write articles	s for scholarly	journals if it is i	aught by faculty	
		partment.					
viapping	of cou	rse outcomes with	n program ie	arning outco	mes:		
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
CO1	3	3			2		
CO2	2	3	3		3	3	
CO3		3			3	3	
C04	2	3	3		3	3	
C05	3						
	13	3	3		3	3	

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Modul	e Content
1	The security problem, The Trinity of Trouble, Security problems in software, The problem with application security, Three pillars of software security, Core and influential properties of secure software, Software security roles, Influencing the security properties of software - defensive and attackers perspective, Attack patterns, Leveraging attack patterns in requirements, design, implementation and testing, Security assurance case, The heartbleed bug and attack, Android security bulletin.
2	Secure SSDLC overview, Risk management framework, Seven touch points for software security, Requirement engineering for secure software, Misuse and Abuse cases, SQUARE process model, Secure software architecture and design, Architectural risk analysis methodologies, Threat modeling - STRIDE, CVSS, Common software code vulnerabilities, Source code review, Coding practises, Software security testing - risk-based testing, penetration testing, Applying RMF on KillerAppCo's iWare 1.0 Server, Model a threat using OWASP Threat Dragon tool, The OWASP top security risks, Tailored threat modeling for the automotive industry – HEAVENS.
3	Secure coding guidelines, Stack and heap-based buffer overflow, Strings, Pointer subterfuge, Dynamic memory management, Integer security, Formatted output, Concurrency, FileIOWeb security - Cross-site scripting attack, Network security - TCP protocol attack, OS security - Secure boot, KASLR, SELinux, Familiarization of software security attacks - Shellshock attack, Return-to-libc attack, Dirty COW attack.
4	Graphical representation of programs - CFG, PDG, Call graphs, CPG, Static Analysis, Dynamic analysis, Tracing, Slicing, Code Coverage, Statement coverage, Branch coverage, Condition coverage, Path coverage, Secure programming tools - Splint, Valgrind, SecureUML and UMLSec, Vulnerability analysis on OWASP 1.1 and construct CFG, Vulnerability of the day, Build It- Break It-Fix It, Vulnerability analysis using deep neural networks.
Text Bo	ooks:
2. 3.	Gary McGraw, Software Security: Building Security In, Addison-Wesley Professional, 2006 Julia H. Allen, Sean J. Barnum, Robert J. Ellison, Gary McGraw, Nancy R. Mead, Software Security Engineering, Addison-Wesley Professional, 2008 Robert C. Seacord, Secure Coding in C and C++,SEI Series in Software Engineering, 2005
	Helfrich, James N, Security for software engineers, Chapman & Hall/CRC, 2019 Ari Takanen, Charles Miller, and Jared D Demott, Fuzzing for Software Security Testing and Quality Assurance, Artech House 2018
Refere	nces:
2.	Wenliang Du, Computer Security: A Hands-on Approach, 2017. C. Warren Axelrod, Engineering safe and secure software systems, Artech House, 2012
	Nhlabatsi, A., Bandara, A., Hayashi, S., Haley, C., Jurjens, J., Kaiya, H.,& Yu, Y. (2011). Security patterns: Comparing modeling approaches. In Software engineering

for secure systems: Industrial and research perspectives (pp. 75-111). IGI Global.

- 4. Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014, May). Modeling and discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy (pp. 590-604). IEEE.
- 5. LaToza, T. D., & Myers, B. A. (2011, September). Visualizing call graphs. In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 117-124). IEEE.
- 6. Abadi, M., Budiu, M., Erlingsson, U., & Ligatti, J. (2009). Control-flow integrity principles, implementations, and applications. ACM Transactions on Information and System Security (TISSEC), 13(1), 1-40.
- 7. Fairley, R. E. (1978). Tutorial: Static analysis and dynamic testing of computer software. Computer, 11(4), 14-23.
- 8. Nethercote, N., & Seward, J. (2007). Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM Sigplan notices, 42(6), 89-100.
- Ruef, A., Hicks, M., Parker, J., Levin, D., Mazurek, M. L., & Mardziel, P. (2016, October). Build it, break it, fix it: Contesting secure development. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 690-703).

Web References:

- 1. <u>https://heartbleed.com/</u>
- 2. <u>https://source.android.com/security/bulletin</u>
- 3. <u>https://owasp.org/www-community/Vulnerability Scanning Tool</u>
- 4. <u>https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot</u>
- 5. https://lwn.net/Articles/569635/
- 6. <u>https://source.android.com/security/selinux</u>
- 7. <u>http://www.cs.umd.edu/~nelson/classes/resources/cdebugging/</u>
- 8. <u>https://splint.org/</u>
- 9. <u>https://splint.org/manual/manual.html</u>
- 10. https://www.valgrind.org/docs/manual/manual-core.html/
- 11. https://autosec.se/wp-content/uploads/2018/03/HEAVENS_D2_v2.0.pdf
- 12. https://owasp.org/www-project-threat-dragon/

M3010145, M3020304 SECURITY IN DIGITAL TRANSFORMATION

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/ Project	Year of Introduction
M301145,	Security in Digital	3-0-0-1	2021
M302304	Transformation		
Prerequisites: Nil			
Course Objectives			

Course Objectives:

- 1. To provide students with a good understanding of the requirements of cyber security in digital transformation.
- **2.** To help the students to develop security solutions in digital transformation using the learned concepts

Course Outcomes: After completion of this course, the students would be able to:
 CO1: Apply the cyber security concepts in various digital transformation domains.
 CO2: Understand the requirement of security in various domains such as IoT, connected vehicles, 5G, AI, and automation

CO3: Complete a term project, including independent research, oral presentation, and programming on a latest advancement in digital transformation.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		3
CO2	3	3	3	2		3
CO3	2	3	3	2	3	3

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content
1	Al powered automation and security, big data analytics, data highways,challenges related to data security, the volume of data, data explosion, unstructured data, data integration,Risks of switching database models, Outsourcing data control, auditing big data, Al-based monitoring of business processes, hyper automation, cognitive automation, Al-driven biometric security solutions, automated machine learning, explainable and conversational AI, RPA, Al-driven automation, AlOps (artificial intelligence for IT operations), confluence of AI and IoT.
2	Hybrid and multi cloud in digital transformation, Cloud Storage security: Limited control of third-party services, Exposing data to public, on-cloud data auditing, Exploitable Application programming interfaces, managing operational risks leveraging automation testing, UI and UX modernization, DevOps, APIs, and Microservices, AI in cloud, Serverless computing, containers, and kubernetes, As-A-Service Revolution, XaaS.
3	Automation In ERP, Robotic Process Automation (RPA), GPS tracking, RFID

	technology, robotics, Drones, and Vehicle Automation, Extended Reality (XR),				
	Mobile security: Resource-limited security mechanisms: Varied use cases of				
	mobile attacks, Platform obscurity, Diverse set of testing configurations, Attacks				
	through varied Communication channels.				
	Security in IoT: Cross-layer security approaches, Flexible system architecture,				
	Hardware-based versus software-based security solutions.				
4	5G and enhanced connectivity: connected vehicles, smartphones, streaming, and				
	entertainment, elevated user experiences, remote working setup, video				
	conferencing, and digital collaborations across domains, WiFi 6.				
	Private, public, and hybrid block chains, Block chain with AI.				
Reference	References:				
1. Willia	m Stallings, 5G Wireless: A Comprehensive Introduction, Addison-Wesley				
Profes	ssional; 1st edition (24 July 2021)				
2. Shaoli	ang Peng, Blockchain for Big Data: AI, IoT and Cloud Perspectives, CRC Press; 1st				
- :4:1	adition (20 August 2021)				

- edition (30 August 2021)3. Parikshit N. Mahalle et al., The Convergence of Internet of Things and Cloud for Smart Computing, CRC Press; 1st edition (3 August 2021)
- 4. Sunil Cheruvu, Anil Kumar, Ned Smith, David M. Wheeler, Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform Security Deployment
- 5. Hanky Sjafrie, Introduction to Self-Driving Vehicle Technology, Chapman and Hall/CRC; 1st edition (11 December 2019)

Course Code	Course Name	Credit Split	Year of Introduction
		Lecture/Lab/Seminar/Project	
M301262	Social Network Analytics and Security	3-0-0-1	2021
Prerequisites: Pri	or knowledge of Computer	r Networks, Natural Langua	ge Processing (NLP),
DBMS, Graph The	ory and Machine Learning		
Course Objectives	:		
applica 2. To exp sufficie	tions and implementations. ose the students to the from ant foundations for further stu	s into the cutting-edge to ntier areas of social networks udy and research.	
Course Outcomes	:		
Upon successful c	ompletion of this course, stud	lents will be able to:	
behind net C02 : Sumn	work analysis algorithms to d	pts and security issues and a levelop practical skills of netwo social networks and analyse th	ork analysis

CO3: Apply mechanisms on how big data technologies, machine and deep learning

algorithms are employed in social networks

C04: Understand how the social technologies impact society and vice versa and examine the ethical and legal implications of leveraging social media data

C05:Complete a term project, including independent research, oral presentation, and programming on a latest advancement in the related areas.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
CO1	3	1	1	1			
CO2	2	2	2	2	2	1	
CO3	2	2	1	2			
C04	1	2	2	2	2	2	
C05	2	2	2	2	2	2	

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content
1	Online Social Networks- Introduction, Types of networks, Properties of nodes and networks, Social Network Analysis: Graph Structure of Social Networks, Centrality Measures- Degree, Closeness, Betweenness, Eigenvector centrality, Idea of small worlds, Networks and Groups- Identifying actors, Activating and mobilizing ties, Understanding how people form communities. System Architectures of OSN- Client Server, P2P.
2	Privacy and Security in Social Networks: Security Threats- Malware attacks, Sybil attacks, Phishing in OSN, Fake Profiles, Social Engineering Attacks, Information Leakage, Dark Web and Social Media. Social Network Analysis and its applications – Influence Maximization-How Information is being created and distributed, Information diffusion among people in a network, How Online Social Networks are formed and evolve over time, Visualizing complex relationships, Identifying powerful and influential participants, Community Detection, Link Prediction. Big Data Analytics and Deep Learning for Social Network Security.
3	Data extraction from Online Social Media, APIs, Modeling and Visualizing Social Network graphs - Tools- Gephi, Graphviz, and NodeXL. Dataset Collection for Social Media Analytics – Visualizing data using Ne04j. Challenges in collecting social media data. Research in Social Networks: Design of novel algorithms for analyzing social networks, Improving the performance of information sharing in social networks. Rumor Detection, Semantic Analysis, Online Sentiment Analysis- opinion mining, feature based sentiment

4	analysis, Trust, credibility, and reputations in social systems. Emerging Areas in OSN: Decentralized Social Networks- When Blockchain meets social networks, Mobile Social Networks, Social Internet of Things (SIoT), Internet of Behavior (IoB) and Social Networks, Cognitive and AI in Social Network Security. Human Cognition and Social Networks: Human Social Networks and ego networks,
	Analysis of ego networks in online social networks, Applying structural knowledge to Online Social Networking services.
	User Behavior Analysis in Social Networks: Psychology of social media users, Personality theories and User Behavior Prediction – Five Factor Theory- TPB-MBTI, Relationships between Personality and Interactions in social networks, Cognitive Psychology and Social Network Usage.
Books and	d other resources:
1.	Recent Publications from top-Tier Conferences and Journals
2.	Social Media Security - Leveraging Social Networking While Mitigating Risk-1st Edition, Michael Cross. eBook ISBN: 9781597499873.
3.	Kazienko, Przemyslaw, Chawla, Nitesh (Eds.) Applications of Social Media and Social Network Analysis, Springer, 2015. eBook ISBN: 978-3-319-19003-7.
4.	Stanley Wasserman; Katherine Faust, Social network analysis: methods and applications, Cambridge; New York: Cambridge University Press, 1994.
5.	Federico Alberto Pozzi ElisabettaFersini Enza Messina Bing Liu, Sentiment Analysis in Social Networks, 1. Edition - Elsevier, 2016. eBook ISBN: 9780128044384.
6.	Valerio Arnaboldi, Andrea Passarella, Marco Conti, Robin I. M. Dunbar, Online Social Networks: Human Cognitive Constraints in Facebook and Twitter Personal Graphs Elsevier - 1st Edition. eBook ISBN: 9780128030424.
7.	Derek Hansen, Ben Shneiderman, and Marc A. Smith, Analyzing Social Media Networks with NodeXL: Insights from a Connected World.
8.	Missaoui, Rokia, Sarr, Idrissa (Eds.), Social Network Analysis - Community Detection and Evolution, Springer, 2014.
9.	Missaoui, Rokia, Abdessalem, Talel, Latapy, Matthieu (Eds.), Trends in Social Network Analysis - Information Propagation, User Behavior Modeling, Forecasting, and

Course Code	Course Name	Credit Split	Year of			
		Lecture/Lab/Seminar/Project	Introduction			
M301105,	Soft Computing	3-0-0-1	2021			
M302314						
Prerequisites: Nil						
Course Objectives:						

M3010105, M3020314 SOFT COMPUTING

Vulnerability Assessment, Springer, 2017.

- 1. To impart algorithmic skills needed for designing soft computing techniques and solutions.
- To equip the students with the ability to identify and analyse problems solvable with soft computing techniques.
- 3. To impart solution design capability with soft computing techniques.

Course Outcomes: After completion of this course, the students would be able to:

CO1:Algorithm design/analysis capability in Soft Computing

CO2: Problem identification and analysis skills on application domains requiring soft computing techniques

CO3: Solution design capability with soft computing techniques

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	1	1	2
CO2	3	2	3	1	1	2
CO3	3	3	3	2	1	2

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content
1	Difference between Soft and Hard computing, Overview of different components of soft computing techniques - Fuzzy Logic, Rough Logic, ANNs, Genetic Algorithms, Swarm Intelligence
2	Introduction to Fuzzy logic, Fuzzy membership functions, Operations on Fuzzy sets, Fuzzy relations, Fuzzy propositions, Fuzzy implications, Fuzzy inferences, De- fuzzyfication, Fuzzy logic controller.

3	Genetic algorithms basic concepts, encoding, fitness function, Parent Selection -
	Roulette wheel, Rank, Tournament, Mutation and Crossover operators, Convergence
	of GA, Applications of GA, Case studies.
4	Swarm Intelligence - agent systems, social agents, Particle Swarm Optimisation - path
	planning applications, Ant Colony Optimisation - solving travelling sales man problem
	with ACO, introduction to Artificial Immune Systems

Text Books:

- 1. R. Rajasekaran and G. A and Vijayalakshmi Pa, Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, Prentice Hall of India, 2011
- 2. T. Ross, Fuzzy Logic with Engineering Applications, Tata McGraw Hill, 1997
- 3. Swarm Intelligence Algorithms, Adam Slowik, CRC press, 2020

References:

- 1. D. E. Goldberg, Genetic Algorithms in Search, Optimisation, and Machine Learning, Addison-Wesley, 1989
- 2. Swarm Intelligence: From Natural to Artificial Systems by Eric Bonabeau, Marco Dorigo and Guy Theraulaz, Oxford University Press, 1999
- 3. Rough Sets: Mathematical Foundations, Lech Polkowski, Physica-Verlag Heidelberg, 2002

Course Code	Course Name	Credit Split	Year of		
		Lecture/Lab/Seminar/Project	Introduction		
M301243	Software Defined Networking	3-0-0-1	2021		
Prerequisites: Basic knowledge in computer networks, operating systems, distributed systems,					
machine learnin	g and programming in Python.				

M3010243 SOFTWARE DEFINED NETWORKING

Course Objectives:

- 1. To instill a thorough and in-depth understanding of SDN fundamentals, technologies, and applications through the introduction and investigation of cutting-edge topics, technologies, applications, and implementations.
- 2. To expose students to cutting-edge research in SDN and NFS while providing sufficient foundation for further study and research.

Course Outcomes:

At the end of this course, students are expected to be able to:

C01: Analyze the evolution of SDNs, express the various components of SDN and their uses, explain the use of SDN in the current networking scenario and develop various applications.

CO2: Describe Network Functions Virtualization and investigate emerging SDN models and security aspects of SDN and NFV.

C03: Complete paper reviews, oral presentations, and a final course project.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
01	3	1		1			
:02	2	2	1	2			
203	1	2	1	2	1	1	
Correla	ation: 1: Slight	(Low) 2: Mod	erate (Mediu	ım) 3: Substa	ntial (High))		
Syllabu	s: Software De	fined Network	ing				
Nodule	2						
Ι	Networking Basics - Switching, Addressing, Routing, The history of SDN, SDN Architecture, Data, Control, and Management Planes, Distributed Control Planes, Centralized Control Planes, Hardware Lookup, Forwarding Rules, Dynamic Forwarding Tables, Autonomous Switches and Routers, Network Automation and Virtualization, SDN Network Updates, SDN Scalability, SDN Applications.						
II	Packet Forw SDN; White- Foundation, Verification		sions and Lin Open ONOS, (, Debuggir	nitations, Minin Sourcing OpenStack, Ope	net: A simulat SDN, O enSwitch; Prog	tching, Actions ion environme pen Netwo ramming Langu I appliances	nt fo orking
III	Application	Models: Proac overy; SDN in	tive, Declara	tive, External;	SDN in Datace	Controller Mo enters: Multiten wered Mobile	ancy
	NFV Refere Chaining, N	nce Architectu	ire, OPNFV, ion, Networl	Inline Networ Slicing, Deve	k Functions, S	nctions, SDN vs. ervice Creatior Network Func	n and
IV	Mitigation t (AAA), Anor Detection ar	hrough SDN a naly Dete nd Prevention	and NFV;, Au ection and Systems, Sec	uthentication, Prevention curity of apply	Authorization, Mechan	Nireless and N	ontro usior 10bile

- 1. Recent Publications from top-Tier Conferences and Journals
- 2. Paul Goransson and Chuck Black, Software Defined Networks: A Comprehensive Approach, Morgan Kaufmann Publications, 2017
- 3. Thomas D. Nadeau & Ken Gray, SDN Software Defined Networks, O'Reilly, 2013
- 4. K. Gray and T. D. Nadeau. Network Function Virtualization. Morgan Kaufmann, ISBN: 978-0-12-802119-4, 2016.
- Shao Ying Zhu, Sandra Scott-Hayward, Ludovic Jacquin, Richard Hill, Guide to Security in SDN and NFV: Challenges, Opportunities, and Applications, Springer, 2017, ISBN-13: 978-3319646527
- 6. Dijiang Huang, Ankur Chowdhary, Sandeep Pisharody, Software-Defined Networking and Security from Theory to Practice, ISBN 9780367780647, CRC Press, 2021.

 Jason Gooley, Dana Yanch, Dustin Schuemann, John Curran, Cisco Software-Defined Wide Area Networks: Designing, Deploying and Securing Your Next Generation WAN with Cisco SD-WAN, ISBN-13: 978-0-13-653317-7, 2020, Cisco Press.

M3010272 SPEECH PROCESSING

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction
M301272 Speech Processing		3-0-0-1	2021
Prerequisites: N	il		
Course Objective	S:		
1. To provid	e students with a good unde	erstanding of the concepts of spee	ech
processin	g tasks described in the sylla	ibus.	
2. To help th	e students develop the abili	ity to solve problems using the lea	arned concepts.
3. To conne	ect the concepts to other	domain both within and wit	hout mathematics
such asm	achine learning and pattern	recognition.	
Course Outcome	s: After completion of this co	ourse, the students would be abl	e to:
state of tl CO2 : Ana processin CO3: Des	ne art solutions. Ilyze and evaluate criticall g algorithms and systems. ign and demonstrate a v earch project, and project rej	modern speech processing the ly the building and integration vorking speech signal processin port, presentation.	n of speech signa
	velop strong fundamental di		
theoretic		s that are of experimental,	computational, of
		demondant and impountive reason	• ala
	· ·	dependent and innovative resear	
	rt audiences;	variety of formats (oral, written)	and to expert and
•	-	ofessional conduct and research;	
PLO 6 Ac	quire professional skills su	ich as collaborative skills, abilities for scholarly journals if it is t	

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		
(Corr Sylla t		ght (Low) 2:	Moderate (M	edium) 3: S	ubstantial (High	n))
Modu	ule Content	:				
1	prosody domain	, IPA notatior representati	n. Lossless tub ions of spee	e model of sp ch; window	eech productio characteristics	ech signals: phonem on. Time and frequer and time/frequer ponse, resonance g
	and ba characte	ndwidth released	ations, band	width expan	ision transform	nation, all-pass fil
2	and ba characte Autocor and frec CELP.	ndwidth relation relation and o quency domai Speech synt	ations, band covariance line ins; alternate	width expan ear prediction LPC parametr age process	n of speech; op risation. Speech ing, prosody,	
2 3	and ba characte Autocor and frec CELP. Synthes Speech algorith	ndwidth relation and o relation and o quency domai Speech synt s; time doma recognition:	ations, band covariance line ins; alternate l hesis: langua in pitch and sp hidden Marko modelling. La	width expan ear prediction LPC parametr age process peech modific ov models an	n of speech; op risation. Speech ing, prosody, cation. d associated re	timality criteria in tin coding: PCM, ADPC

- 1. Lawrence Rabiner and Ronald Schafer. 2010. Theory and Applications of Digital Speech Processing (1st. ed.). Prentice Hall Press, USA.
- 2. Ben Gold, Nelson Morgan, and Dan Ellis. 2011. Speech and Audio Signal Processing: Processing and Perception of Speech and Music (2nd. ed.). Wiley-Interscience, USA.

References:

- 1. O'Shaughnessy, D. (1987). Speech Communication: Human and Machine. Addison-Wesley.
- 2. Tokunbo Ogunfunmi, Roberto Togneri, and Madihally (Sim), Narasimha. 2014. Speech and Audio Processing for Coding, Enhancement and Recognition. Springer Publishing Company, Incorporated
- 3. Benesty, J.; Sondhi, M. M. & Huang, Y., ed. (2008), Springer Handbook of

Speech Processing , Springer , Berlin.

Course Name **Credit Split Course Code** Year of Lecture/Lab/Seminar/Project Introduction M301292 **Stochastic Processes and** 3-0-0-1 2021 Models Prerequisites: Nil Course Objectives: To provide students with a good understanding of the concepts of information theoretic methods, stochastic processes and models described in the syllabus. To help the students develop the ability to solve problems using the learned concepts. To connect the concepts to other domain both within and without mathematics such as pattern recognition. **Course Outcomes:** After completion of this course, the students would be able to: **CO1:**Understand the foundations of modern stochastic models theory, problem and state of the art solutions. CO2: Analyze and evaluate critically the building and integration of stochastic models algorithms and systems. CO3: Design demonstrate a working stochastic models system and through team research project, and project report, presentation. Program Learning Outcomes: PLO 1 Develop strong fundamental disciplinary knowledge PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature PLO 3 Apply scholarship to conduct independent and innovative research PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences; **PLO 5** Practice ethical standards of professional conduct and research; **PLO 6** Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department. Mapping of course outcomes with program learning outcomes: PLO1 PLO2 PLO3 PLO4 PLO5 PLO6 CO1 3 2 3 2 2 CO2 3 3 3 3 3 2 CO3 2 (Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)) Syllabus: Module Content

M3010292 STOCHASTIC PROCESSES AND MODELS

1	Introduction to Probability Theory: sample space, events, Algebra of sets, Notion and Axioms of probability, Equally Likely events, Conditional probability, independent events, concepts of random variables, PMF, PDFs, CDFs, Expectation. Concepts of joint and multiple random variables, joint, conditional and marginal distributions. Correlation and independence.
2	Bayesian belief networks (BBN): Representation, Independence and conditional independence, Partial independence and other structure. Exact inference in BBN: Variable elimination, Pearl's algorithm, Junction tree, Recursive decomposition, Using additional structure.
3	Approximate inference: Monte Carlo approximations, Loopy belief propagation, Variational methods. Learning of BBNs: learning parameters, learning structure, Bayesian averaging, EM (learning with hidden variables and missing values), structural EM
4	Dynamic belief networks: Particle filtering. Markov random fields (Markov networks):Representation (potentials), Independence and conditional independence, Trees, Boltzman machines, Conditional Markov random fields. Inference in Markov networks. Learning Markov networks: Iterative proportional fitting, Cluster variational methods, Other approximations. Relational graphical models

Text Books:

- 1. Hsu HP. Theory and problems of probability, random variables, and random processes. New York: McGraw-Hill; May 2014.
- 2. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering, Third Edition, Prentice-Hall, 2008.
- 3. Koller D. and Friedman, N., Probabilistic Graphical Models: Principles and Techniques , The MIT Press (2009).
- 4. Barber, D., Bayesian Reasoning and Machine Learning , Cambridge Univ. Press (2012).

References:

- 1. Feller W. An introduction to probability theory and its applications. John Wiley & Sons; 2008.
- 2. A. Papoulis, Probability, Random Variables, and Stochastic Processes, Mc-Graw Hill, 2005.
- 3. David J.C. Mackay. Information theory, inference, and learning algorithms. Cambridge, UK:Cambridge University Press.
- 4. Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman.

Course Code Course Name		Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction
M301273	Ubiquitous Computing	3-0-0-1	2021

M3010273 UBIQUITOUS COMPUTING

Prerequisites: Basic knowledge in computer networks, operating systems, distributed systems, computer vision

Course Objectives:

- 1. To impart fundamental concepts in the areas of wireless networks and mobile computing.
- 2. To introduce advanced topics in wireless networks and mobile computing.

Course Outcomes:

At the end of this course, students are expected to be able to:

C01: Understand the general principles of Ubiquitous Computing and the key technical and social factors driving the change towards modern ubiquitous systems.

CO2: Understand different approaches used in Ubiquitous Computing and evaluate their applicability in specific application scenarios.

CO3: Complete application development, paper reviews, oral presentations, and a final course project.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1		1		
CO2	2	2	1	2		
CO3	2	2	1	2		1

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus: Ubiquitous Computing

Module Content

L Computing Introduction to Ubiquitous and Pervasive Computing, Ubiquitous Examples, Research Opportunities, Impact of Ubiquitous Computing, Architecture for Middleware. Ubiquitous Computing, Sensors, Ambient Displays, Tangibles, Wireless Standards&Protocols for Ubiguitous Networks, Personal Assistants, Location Aware Computing, Location Tracking, Architecture, Location Based Service and Applications, Location Based Social Networks (LBSN), LBSN Recommendation. Ш Integrating the Physical and the Virtual Worlds: Sensing and Actuation; Awareness and Perception, Urban Sensing and Mobile Crowdsensing, Participatory and Social Sensing, Crowd Sourcing Platforms and Applications, Internet of Things and Ubiquitous Sensing, Social Network Applications, Context and Location Aware Applications and Services, Ubiquitous Data Access, Context-aware Computing, Issues and Challenges, Mobility, and Location and Context Awareness, Context Prediction, Developing Context-aware Applications.

Ш	Energy Constraints ir	n Ubiquitous	Computing, W	earable Co	mputing,	Body	Area
	Networks, Privacy	and Security in	Ubiquitous (Computing,	Sensor	Cloud, I	Mixed
	Reality, Contact-free	Sensing, Glass	and Augmente	d Reality, Ey	/e-Trackin	g, Digita	al Pen
	and Paper, Mobile	Social Netwo	orking, Event Ba	sed Social	Networ	rk, Mobil	le P2P
	Computing, AI and B	ig Data Analytics	s in Ubiquitous (Computing.			
IV	Illustration of So	ome Existin	g Applicatio	on Dom	ains for	Ubiqu	uitous
	Computing in such a	reas as Gaming	. Workplaces.	Domestic	Spaces.	Museum	is and

Computing in such areas as Gaming, Workplaces, Domestic Spaces, Museums and Educational Communities. Adaptive Human Activity and Behaviour Recognition Models, Pervasive Healthcare, Urban Computing and Reality Mining, Ambient Assisted Living, Cyber-Physical Social Systems, Mobile HCI, Internet of Thinking.

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals
- 2. A. Genco and S. Sorce, Pervasive Systems and Ubiquitous Computing, ISBN: 978-1-84564-482-6, 2010, WIT Press
- 3. Aline Godfroid, Eye Tracking in Second Language Acquisition and Bilingualism: A Research Synthesis and Methodological Guide, 2020 ISBN 9781138024670, Routledge
- 4. Conklin, K., Pellicer-Sánchez, A., & Carrol, G. (2018). Eye-Tracking: A Guide for Applied Linguistics Research. Cambridge: Cambridge University Press, ISBN: 9781108401203
- 5. Cristian Borcea, Manoop Talasila, Reza Curtmola, Mobile Crowdsensing, ISBN 9780367658304, 2020.
- 6. Jon Peddie, Augmented Reality: Where We Will All Live, 2017, Springer International Publishing, ISBN 978-3-319-54501-1
- 7. Laurence T. Yang, Evi Syukur, Seng W. Loke, Handbook on Mobile and Ubiquitous Computing Status and Perspective, 2016, ISBN 9781138198593, CRC Press.
- 8. Mohammad S. Obaidat, Mieso Denko, Isaac Woungang, Pervasive Computing and Networking, 2011, ISBN: 978-0-470-74772-8, Wiley
- 9. Samuel Greengard, Virtual Reality, The MIT Press, 2019, ISBN-13 : 978-0262537520
- 10. Saravanan, P. Shanthi and S. R. Balasundaram. Privacy and Security Challenges in Location Aware Computing. IGI Global, 2021, ISBN13: 9781799877561
- 11. Stefan Poslad, Ubiquitous Computing: Smart Devices, Environments and Interactions, ISBN:9780470035603, 2009, John Wiley & Sons
- 12. Tom Lovett, Eamonn O'Neill, Mobile Context Awareness, 2012, Springer-Verlag London, ISBN 978-0-85729-624-5
- 13. Ubiquitous Computing Fundamentals, John Krumm, CRC Press, 2018
- 14. Yun Fu, Human Activity Recognition and Prediction, 2016, Springer International Publishing, ISBN 978-3-319-27002-9
- 15. Zaigham Mahmood, Guide to Ambient Intelligence in the IoT Environment: Principles, Technologies and Applications, 2019, Springer International Publishing, ISBN 978-3-030-04172-4

Course Code	Course Name ourse Code			Credit Split Lecture/Lab/Seminar/Project			ect	Year of Introduction			
M301244	Video A	Anal	ytics			3-0-0-1			20)21	
Prerequisites:	Introduction	to	Signal	and	Image	Processing,	Basic	pro	oficiency	in	Python,

M3010244 VIDEO ANALYTICS

Introduction to Machine Learning and Deep Learning, Introduction to Networks and Wireless Sensor Networks.

Course Objectives:

- 1. To introduce the basics of video analytics and its applications
- 2. To develop an awareness about the algorithms and deep learning architectures for video analytics
- 3. To provide an understanding of recent advancements in video analytics
- 4. To design and evaluate complex video analytics systems with design decisions and empirical evidence.

Course Outcomes:

At the end of this course, students are expected to be able to:

CO1: Understand the fundamentals of video processing and familiarize motion-based algorithms and python libraries for segmentation, object recognition, and tracking. **CO2**: Gain knowledge about the deep learning models for video analytics. **CO3**: Identify recent developments in real-time video analytics; design and analyze algorithms for real-world problems.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Mappi	ng of course ou	utcomes with p	program lear	ning outcome	es:	
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	1		1		
CO2	3	2	1	2		
CO3	1	2	2	2		2
(Correl	ation: 1: Slight	(Low) 2: Mod	erate (Mediu	um) 3: Subst	antial (High))	
Syllabı	is: Video Analy	tics				
Modul	e Content					
I	Time-Varyin Structure Segmentatic Methods, M Local Featu	g Image F Conversion on, Methods U lotion Segmen	ormation I , Three-Dime Jsing Point tation, Stere etection and	Models, Spatio ensional Corresponde o and Motion d Recognition	o-Temporal Motion E nces, Optica Tracking, Bao , Programmir	I Flow and Direct ckground Modeling ng Image and Videc
II					•	Multi-target/Multi

camera tracking, Motion Estimation, Action Recognition, Demonizing, Image and Video enhancement, Image and Video compression, Privacy-preserving Techniques for Video Processing, Stereo and Mono Depth Estimation, Decision Trees/Random Forest, Deep Learning for Intelligent Video Analytics--CNN, GAN, Autoencoder, LSTM-Object Detection-Transfer Learning-Multiple Objects Tracking. Open Source Models-Luminoth, Detectron2, YOLO.

III Video Analytics Measuring Accuracy/Accuracy Issues, Architecture, Hardware, Video Analytics Demographics (Age, Clothing, Emotion, Gender, Race), Digital Video Security, Networks and Networked Video, Wireless Networked Video, Video Analytics in WSN, IoT Video Analytics Architectures, Edge Intelligence for Video Analytics, Autonomous Real-Time on-Board Video Analytics, Live Video Analytics with FPGA-based Smart Cameras.

IV Case Study: Face Detection and Recognition, Natural Scene Videos, Video Surveillance: Crowd Analysis, Traffic Monitoring, Intelligent Transport System; Remote Sensing, Robotics, Healthcare, Live Video Analytics for Drones, Social Media Video Analytics and Metrics.

Books and other resources:

- 1. Recent Publications from top-Tier Conferences and Journals.
- 2. Debjyoti Paul, Charan Puvvala, Video Analytics Using Deep Learning: Building Applications with TensorFlow, Keras, and YOLO, 1st Edition, 2020.
- 3. Murat Tekalp, Digital Video Processing, Prentice Hall Signal Processing Series, 2nd Edition, 2015.
- 4. IPVM, Video Analytics Book 2021.
- 5. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.
- 6. Jayavardhana Gubbia, Rajkumar Buyya, Slaven Marusic, Marimuthu Palaniswami., Internet of Things (IoT): A vision, architectural elements, and future directions", Journal Future Generation Computer Systems, Elsevier, 2013.
- Ching-Tang Fan, Yuan-Kai Wang and Cai-Ren Huang, Heterogeneous Information Fusion and Visualization for a Large-Scale Intelligent Video Surveillance System, IEEE Transactions On Systems, Man, And Cybernetics: Systems, Vol. 47, No. 4, April 2017.
- 8. Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, Video Analytics for Business Intelligence, Springer, 2012.
- 9. Asier Perallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, Intelligent Transport Systems: Technologies and Applications, Wiley, 2015.
- 10. Plamen Angelov , Pouria Sadeghi-Tehran, Christopher Clarke, AURORA: Autonomous Real-time On-board Video Analytics, Springer, 2017.

Course	Course Name	Credit Split	Year of
Code		Lecture/Lab/Seminar/Project	Introduction
M302324		3-0-0-1	2021
	Web Technology		
Prerequisit	es: Nil		

M3020324 WEB TECHNOLOGY

1. To	bjectives:				- I		-l-		
	o help stud	lents i	understa	nd the w	eb applic	ation fun	damenta	als.	
2. To	o explore tl	he arc	hitecture	e and des	sign princ	iples of v	veb base	d applica	ations.
3. To	o understa	nd the	e most si	iitable ap	plication	stack fo	r a requir	ement a	nd its
in	nplementa	tion.							
	o explore a sues, REST		elated co	oncepts li	ike Micro	services,	commoi	n web ap	plication securi
Course O	utcomes: /	After	completi	on of this	s course,	the stud	ents wou	uld be ab	le to:
Ci C te	chnology s	op web ze and stacks	o applica I evaluato	tion usin _{ e criticall ⁱ	g MEAN a y the bui	and MERI Iding and	integrat		fferent web s and issues
	Learning C					wiii publi	Siled See		5 010 155005
no Pl Pl er th	on-expert a L O 5 Practi L O 6 Acquir	audier ce eth re pro urial sl nent.	nces; nical stan ofessiona kills, and	dards of l skills su write art	professic ch as coll icles for s	onal cond aborative scholarly	uct and r e skills, a journals	esearch; bility to v) and to expert a write grants, ught by faculty i
		outco	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	7
apping		<u> </u>	3	1	2	2		1 200	_
apping	-	CO1	1.5						
viapping		CO1 CO2	3	2	3	2	1		_
napping				2 3	3 1	2 2	1		_
viapping		CO2	3						
(C	Correlation	CO2 CO3 CO4	3 3 3	3 3	1 2	2	1 2	tantial (H	ligh))
(C	Correlation	CO2 CO3 CO4	3 3 3	3 3	1 2	2	1 2	tantial (H	
	Correlation	CO2 CO3 CO4 : 1: Sli	3 3 3	3 3	1 2	2	1 2	tantial (H	

	Elements, Attributes and elements, Type of Style sheets: Internal Style Sheet, Inline Style sheet, External Style Sheet, CSS3 Elements and features, CSS frameworks, Content delivery network, Selectors, XML Schema, Presenting XML Using XML Processors: DOM and SAX.
2	Introduction to Java Script, Object in JavaScript, Dynamic HTML with Java Script, JavaScript Object Notation, JSON vs XML, JSON Parsing, Data types, Arrays, Decisions and Loops, Functions and scope, JavaScript libraries, JavaScript Frameworks, ECMAScript, TypeScript, Single page applications (SPA),Cookies, Sessions management, Cleint side processing. The Web Services based on technologies such as SOAP, REST, WSDL, Django Framework: Architecture, MVT Architecture Pattern in Django Structure
3	Basics of angular Framework, Basics of React Web Framework, Nodejs and Expressframework, Introduction to MongoDB, Sample MERN Stack application, Sample MEAN stack application, Node js design patterns – Singleton, Factory, Builder, Prototype,
4	Data Visualization Techniques for small and large data, OWASP Top Ten Web Application Security Risks, Fundamentals of web application architecture (1Tier, 2- Tier, 3-Tier, N Tier and MVC) and components, User interface app components, Structural components, Microservices, Monolithic vs. Microservices

TeText Books:

- 1. Jeffrey C. Jackson, Web Technologies A Computer Science Perspective, Pearson Education 2009.
- 2. Amos Q. Haviv, Adrian Mejia, Robert Onodi Web Application Development with MEAN
- 3. Vasan Subramanian Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node 2nd ed. Edition
- 4. Joseph B. Mille, Internet Technologies and Information Services, ABC-CLIO 2014.
- 5. Jim Morrish , Rishi M. Bhatnagar, Enterprise IoT: Strategies and Best Practices for Connected Products and Services - Dirk Slama, Frank Puhlmann , O-Reilly Media (2015).

References:

- 1. Leon Shklar, Richard Rosen , Web Application Architecture Principles, Protocols and Practices, Wiley 2009.
- 2. Laura Lemay, Rafe Colburn, Jennifer Kyrnin, Mastering HTML, CSS & Javascript Web Publishing Paperback 2016.
- 3. Giacomo Veneri Antonio Capasso, Hands-On Industrial Internet of Things Paperback, Packt Books 2018.
- 4. Pabbathi, Quick Start Guide to Industry 4.0: One-stop reference guide for Industry 4.0, 2018.

Course	Course Name	Credit Split	Year of	
Code		Lecture/Lab/Seminar/Project	Introduction	
M301204	Wireless Networks and Mobile Computing	3-0-0-1	2021	
Prerequisite Programmin	s: Basic knowledge in comput g in Python	er networking and digital	communications,	
1				

M3010204 WIRELESS NETWORKS AND MOBILE COMPUTING

Course Objectives:

1. To impart fundamental concepts in the areas of wireless networks and mobile computing.

2. To introduce advanced topics in wireless networks and mobile computing.

Course Outcomes:

Upon successful completion of this course, students will be able to:

CO1: Understand the fundamentals of wireless networks and mobile computing.

CO2: Understand the selected recent paradigm-shifting concepts being developed in the research community.

CO3: Complete written paper reviews, an oral paper presentation, and a final course project.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written)

PLO 5 Practice ethical standards of professional conduct and research

PLO 6 Acquire professional skills such as collaborative skills and write articles for scholarly journals.

Марріі	Mapping of course outcomes with program learning outcomes:									
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6				
CO1	3	1		1						
CO2	2	2	1	2						
CO3	2	2	1	2		1				
(0)			. /							

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus: Wireless Networks and Mobile Computing

Module Content

- I 802.11 Wireless LANs, Personal Area Networks: Bluetooth and Zigbee, Near Field Communication (NFC), Cellular Internet Access: 3G, 4G, & 5G; Mobile IP, Location and Handoff Management, Routing, Wireless Multicasting, Topology Control in Wireless, Traffic and Congestion Control, Resource Management, Energy-efficient Protocols for Wireless Networks, Smart Antennas, MIMO and OFDM Based PHY Layer Technologies, Mobility and QoS Management, Policy Based Management in Wireless LANS, 6G, 7G and 8G
- Ш Voice-Oriented Wireless Networks, Data-Oriented Wireless Networks, Mobile Ad Hod Networks and Multi-Hop Wireless, Ultra-wideband and Short-Range Networks, High Altitude Platforms and Satellites, Emergency Wireless Communications, Wireless Real-Time Communications, RFID systems, Service Discovery in Mobile Environments, On-demand Mobility, Cross-layer Design and Optimization, Opportunistic Networks, Wireless Mesh Networks, Delay Tolerant Networks, Wireless Access Networks, Space Networks, Virtualization in Wireless Software Defined Wireless Networks, Networks. Big Data and Mobile Networks, Energy-aware in Mobile Networks; Cellular Cognitive Networks, Cooperative and Cognitive Vehicular Networks, Drone networking, Connected and

	Autonomous Cars.
- 111	Indoor and Outdoor Localization, Smartphone Localization, WiFi Fingerprinting, Non-
	WiFi Localization, Device-Free Sensing with Radio Frequency, Next Generation (5G)
	Wireless Technologies, Upper Gigahertz and Terahertz Wireless Communications,
	Millimeter Wave Networking, Visible Light Communication, Sensing Through Visible
	Light, Visible Light Indoor Localization and Positioning, Indoor and Outdoor
	Navigation, Machine Learning in Mobile Computing.
IV	Security in Wireless LANs, Security in Cellular Networks, Bluetooth Security, Mobile
	Security, Threat and Vulnerability Management, Ad hoc Network
	Security, Authentication Protocols, Identity Management, Cross-layer Design Security,
	Cryptographic Algorithms and Applications, Key Distribution and Management;
	Intrusion Detection and Prevention, Network Security Protocol Design, Physical Layer
	Security, Security and Privacy of Location-based Services, Trust Management.
Books	and other resources:
1.	Recent Publications from top-Tier Conferences and Journals
2.	Andre Perez, Mobile Networks Architecture, 2012, Wiley, ISBN: 9781848213333
3.	D. P. Agrawal and Qing-An Zeng, Introduction to Wireless & Mobile Systems, 4th
5.	Ed., Cengage Learning, 2014.
4.	Georgios Kambourakis, Félix Gómez Mármol, Guojun Wang, Security and Privacy in
	Wireless and Mobile Networks, ISBN 978-3-03842-780-3, 2018, MDPI
5.	Gerardus Blokdyk, Mobile Network A Complete Guide, 2021, ISBN-13 : 978-
_	1867402572, 5STARCooks
6.	Guowang Miao, Fundamentals of Mobile Data Networks, Cambridge University Press,
	2016, ISBN-13 : 978-1107143210
7.	Haesik Kim, Design and Optimization for 5G Wireless Communications, 2020,
	ISBN:9781119494553, John Wiley & Sons Ltd
8.	James F. Kurose, Keith W. Ross, Computer Networking A Top-Down Approach, Pearson
9.	Jonathan Rodriguez, Fundamentals of 5G Mobile Networks, ISBN: 9781118867525,
	2015 <i>,</i> Wiley
10.	Khaldoun Al Agha Guy Pujolle Tara Ali-Yahiya, Mobile and Wireless Networks, 2016,
	ISBN: 9781848217140, Wiley.
11.	Lin, Yi-Bing, Wireless and Mobile All-IP Networks, 2005, ISBN 0471749222, John Wiley &
	Sons
12.	Sherine Mohamed Abd El-Kaderand Hanan Hussein, Fundamental and Supportive
	Technologies for 5G Mobile Networks, 2019, ISBN13: 9781799811527, IGI Global
13.	Steve Rackley, Wireless Networking Technology from Principles to Successful
1.4	Implementation, ISBN 13: 978-0-7506-6788-3, Elsevier
14.	Yan Zhang, Honglin Hu, Masayuki Fujise, Resource, Mobility, and Security Management in Wireless Networks and Mobile Communications, 2006, ISBN
	9780849380365, Auerbach Publications
15	Yan Zhang, Jijun Luo, Honglin Hu, Wireless Mesh Networking: Architectures, Protocols
15.	and Standards, 2006, ISBN 9780849373992, Auerbach Publications.
16	Zabih Ghassemlooy, Luis Nero Alves, Stanislav Zvanovec, Mohammad-Ali Khalighi,
10.	Visible Light Communications Theory and Applications, 2017, ISBN 9780367878108, CRC
	Press.

M3010214 WIRELESS SENSOR NETWORKS

Co	e Code	Course N			R NETWORKS	Year of
Cours	e Code	Course N			dit Split 'Seminar/Project	
M3	01214	Wireless Senso			-0-0-1	2021
	isites: Prid		of opera	ting system	ms, computer	networks, distribut
		raph Theory.	or opera	ating system	ins, computer i	networks, distribut
Course (Objectives	:				
V	vorld scen	arios.				ir application to re
	o investig protocols.	ate the various p	protocols at v	various layers	and their differe	nces with tradition
		tand the issues passes of the sensor network.		sensor netv	works and the ch	allenges involved
		ce students to c s for further stud			less sensor netw	orks while providi
Course (Outcomes	,				
Upon sı	uccessful c	ompletion of this	s course, stud	ents will be a	ble to:	
F	PLO 1 Deve PLO 2 Dem	Outcomes: elop strong funda ionstrate researc		-	-	tional, or theoreti
	nature	v coholorchin to r	oodust indou	aandant and i	innovativa rocoar	ch
		v communication			innovative resear ats (oral written)	CH .
		tice ethical stand		•	•	
			•			articles for schola
,	ournals.					
Mappin	g of course	e outcomes with	program lea	rning outcom	les:	
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
01	3	2	1	1		
02	3	2	2	2		
CO3	2	2	2	2		
C04	2	2	2	3	2	1
Correla	tion: 1: Sli	ght (Low) 2: Mo	derate (Medi	um) 3: Subs	tantial (High))	·
		Sensor Network				

Module	Content
1	Introduction to Wireless Sensor Networks: Motivations, Application domains of sensor networks, Design Challenges. Operational and Computational Models, Performance metrics, Network Architecture: Traditional Layered Stack, Cross-Layer Designs, Sensor Network Architecture. Single-Node Architecture. Sensor node hardware: mica2, micaZ, telosB, cricket, Imote2, tmote, btnode; Sensor Node Software (Operating System): tinyOS, MANTIS, Contiki, and RetOS. Introduction to Simulation tools- TOSSIM, OPNET, NS2, NS3, Description of the NS-3 core module and simulation examples and projects.
2	Middleware for WSN, Protocol Stack in WSN, Medium Access Control in WSN, MAC Protocols, Node Discovery Protocols, Network Clustering, Introduction to Markov Chain: Discrete time Markov Chain definition, Properties, Classification and Analysis; MAC Protocol Analysis; Programming in WSNs, Programming Tools: C, nesC. Challenges and Limitations of Programming WSNs.
3	Robust RouteSetup, Routing ProtocolsforWSN, Copingwithenergyconstraints, ClusteringinWSNs, QoSManagement, Topology Management. NetworkBootstrapping:Sensordeploymentmechanisms,Issuesof Coverage. Localization Schemes. FaultTolerance. MobileWSN, Synchronization, Congestionand FlowControl; SensorDataStorage, Retrieval,Processing. SensorFusionandAggregation:Sensor FusionParadigms,Probabilistic, Dempster-Shafer Based,Centralized andDistributed Kalmanfilter,Q-digest. Compressive Sensing and Data Gathering in WSN.
4 Books ar	Underwater Acoustic Sensor Networks: Issues and Challenges, Simulation Tools, Application Areas. Body Area Sensor Networks. IoT-Enabled Sensor Networks. Sensor Cloud. Sensor Networks and Edge Computing. Security, Trust and Privacy. Key Management. Real Life Deployment of WSN and Underwater Sensor Networks.
2. A 2 3. A	ecent Publications from top-Tier Conferences and Journals ggeliki Prayati, Problem Solving for Wireless Sensor Networks, ISBN:9781848002036, 008, Springer London gus Kurniawan, Practical Contiki-NG: Programming for Wireless Sensor Networks, SBN:9781484234082, 2018, APress
V 5. A D	nna Forster, Introduction to Wireless Sensor Networks, ISBN:9781119079958, 2016, Viley nna Hac, Wireless Sensor Network Designs, ISBN-13 : 978-0470867365, John Wiley & Sons, December 2003.
Р 7. Н	dgar H. Callaway, Jr. and Edgar H. Callaway, Wireless Sensor Networks: Architectures and rotocols, ISBN 9780849318238, CRC Press, August 2003. Iolger Karl and Andreas Willig, Protocols and Architectures for Wireless Sensor Ietworks, ISBN-13: 978-0470519233, Wiley-Interscience, 2007.
8. H E	lossam Mahmoud Ahmad Fahmy, Wireless Sensor Networks: Concepts, Applications, xperimentation and Analysis, ISBN: 9789811004124, 2021, Springer Singapore. prahiem M. M. El Emary, S. Ramakrishnan, Wireless Sensor Networks: From Theory to
А 10. Ji	pplications, ISBN 9781138198821, CRC Press, 2016. In Zheng, Abbas Jamalipour, Wireless Sensor Networks: A Networking Perspective, Wiley- EEE Press, 2009, ISBN: 0470167637.

- 11. Kazem Sohraby, Daniel Minoli, Taieb Znati, Wireless Sensor Networks: Technology, Protocols, and Applications, John Wiley & Sons, ISBN 978-0-471-74300-2, 2007
- 12. Mauro Conti, Secure Wireless Sensor Networks: Threats and Solutions, ISBN:9781493934607, 2015, Springer New York
- 13. Mohammad Matin, Wireless Sensor Networks Technology and Protocols, ISBN 978-953-51-0676-0, InTech, 2012.
- 14. Shuang-Hua Yang, Wireless Sensor Networks: Principles, Design and Applications, ISBN:9781447155058, 2013, Springer London
- 15. Waltenegus Dargie, Christian Poellabauer, Fundamentals of Wireless Sensor Networks: Theory and Practice, Wiley, ISBN: 978-0-470-99765-9, July 2010

Laboratory Courses

M3021316 BIG DATA TECHNOLOGIES LAB

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction						
M302316	Big Data Technologies Lak		2021						
Prerequisites: N	Jil								
Course Objectiv	es:								
ourse Outcomes: After completion of this course, the students would be able to:									
CO1: Use	e MapReduce and Hadoop								
CO2: Ana	alyze and process bigdata usi	ing Apache Spark							
CO3: Dev	elop methods to work with	big data							
CO4: Ap	oly machine learning with py	Spark							
Program Learni	ng Outcomes:								
	evelop strong fundamental d								
	emonstrate research skill: cal nature	s that are of experimental, c	omputational, or						
PLO 3 Ap	ply scholarship to conduct ir	ndependent and innovative resear	ch						
PLO 4 Sh	ow communication skills in a	a variety of formats (oral, written)	and to expert and						
non-exp	ert audiences;								
PLO 5 Pr	actice ethical standards of pr	rofessional conduct and research;							
PLO 6 A	cquire professional skills sι	uch as collaborative skills, ability	to write grants						
	entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in								
entrepre		the department.							
•			<u> </u>						
the depa		learning outcomes:							

r									
CO1	3		3	2	1	2	1		
CO2	3		2	1	1	1	1		
CO3	3		3	1	1	1	2		
CO4	3		3	2	1	2	1		
	(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))								
Syllab	ous:								
Modu	ıle	Cont	ent						
1		Hado	pop Hands-on						
		Gett	ing Started wit	h MapRedu	ice and Hado	ор			
		Map	oReduce Exerci	ses					
2			S Introduction						
			se/Cassandra H		oSQL]				
3		-	king with Large						
4			king with pySp						
			hine Learning v	with pySpar	k				
Text	Boo	ks:							
		1.	Data Analytics	with Spark	CUsing Pytho	on, By Jeffrey	Aven, Addison W	/eley Data &	
		Ana	lytics series, 20	018					
		2. Big Data Analytics with Spark, Mohammed Guller, APress, 2015							
			•		•	•	n, O'Reilly Media		
		4. Beautiful Data, Toby Segaran, Jeff Hammerbacher, O'Reilly Media, 2009.							
Refer	ence	es:							
			Mining of University Pres		atasets, Ana	nd Rajaraman,	Jeffrey D Ullmar	n. Cambridge	

M3022207 CYBER ANALYTICS LAB

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introduction				
M302207 Cyber Analytics Lab 0-1-0-0							
Prerequisites:							
• N	lil						
Course Objectiv	ves:						
 To introduce basic machine learning techniques. To develop the skills in using recent machine learning software/tools for solving cyber security problems To develop the skills in applying appropriate supervised, semi-supervised or unsupervised learning algorithms for solving practical cyber security problems. 							
Course Outcomes: After completion of this course, the students would be able to:							
CO1 : Ide	ntify appropriate machine learr	ning techniques for cyber securit	ty analytics.				

CO2: Apply recent machine learning software/tools for solving cyber security problems

CO3: Apply appropriate supervised, semi-supervised or unsupervised learning algorithms for solving practical cyber security problems.

Program Learning Outcomes:

PLO 1: Develop strong fundamental disciplinary knowledge

PLO 2:Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3: Apply scholarship to conduct independent and innovative research

PLO 4: Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5: Practice ethical standards of professional conduct and research;

PLO 6: Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3	2			
CO2	3	3	3		3	
CO3	3	3	3		3	

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content	
	1. Familiarize with Python Libraries- Numpy, Pandas, Matplotli	b, Scikit
1	2. Familiarize with Scikit-Learn, Keras, and TensorFlow	
-	3. Perform Data exploration and preprocessing in Python	
	1. Implement regularised Linear regression	
2	2. Implement Naive Bayes classifier for dataset stored as CSV fil	e.
2	3. Implement regularized logistic regression	
	4. Apply these techniques to various cyber security datasets	
	1. Build models using different Ensembling techniques	
	2. Build models using Decision trees	
3	3. Build model using SVM with different kernels	
	4. Apply these techniques to various cyber security datasets	
	1. Implement K-NN algorithm to classify a dataset.	
	2. Build model to perform Clustering using K-means after apply	ing PCA
4	and determining the value of K using Elbow method.	
	3. Implement CNN for image classification	
	4. Apply these techniques to various cyber security datasets	

References

- 1. Cybersecurity Analytics, Rakesh M. Verma, David J. Marchette, Chapman and Hall/CRC, 2019
- 2. Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel, Machine Learning Approaches in Cybersecurity Analytics, Springer 2020
- 3. Clarence Chio, David Freeman, Machine Learning & Security, O Reilly, 2018
- 4. Mark Stamp, Introduction to Machine Learning with Applications in Information Security, CRC Press, 2018
- 5. D K Bhattacharyya, J K Kalita, Network Anomaly Detection, A machine Learning Perspective, CRC Press, 2014Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts By AurélienGéron, "O'Reilly Media, Inc.", 2019
- 6. P.-N. Tang, M. Steinbach, and V. Kumar: Introduction to Data Mining, Addison Wesley, 2006
- 7. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, Morgan Kaufman Publishers, Third Edition, 2011.
- A Practical Approach for Machine Learning and Deep Learning Algorithms by Abhishek Kumar Pandey, Pramod Singh Rathore, S Balamurugan, BPB Publications, 2019
- 9. Soma Halder, Sinan Ozdemir, Hands-On Machine Learning for Cybersecurity: Safeguard your system by making your machines intelligent using the Python ecosystem, Packt Publishing (December 31, 2018)

Course Code	Course Name	Credit Split Lecture/Lab/Seminar/Project	Year of Introducti on
M302106	Cyber Security and	0-1-0-0	2021
	Forensics Lab		
Prerequisites:			
Nil			
Course Objecti	ves:		
1. Perforn	n various cyber securit	ty attacks	
2. Test too	ols to detect and preve	ent cyber attacks	
3. Perforn	n digital forensic inves	tigations using various tools	
Course Outcon	nes: After completion	of this course, the students would be able to:	
CO1 Sin	nulate cyber attacks/c	rimes and cyber security mechanisms.	
CO2:	Perform digital fore	nsics analysis on OS, memory, networks an	d network
devices	etc.		
CO3 : L	Itilize various cyber	security and forensic tools to understand cy	ber attacks
	lect digital evidence.		
	ing Outcomes:		
PLO 1:	Develop strong funda	mental disciplinary knowledge	
		ch skills that are of experimental, compu	tational or
	ical nature	en skills that are of experimental, compa	

M3022106 CYBER SECURITY AND FORENSICS LAB

PLO 3: Apply scholarship to conduct independent and innovative research **PLO 4**: Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5: Practice ethical standards of professional conduct and research;

PLO 6: Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	3	2			
CO2	3	3	3		3	
CO3	3	3	3		3	

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content
1	Testing strengths of passwords using password cracking tools, Monitoring using kee loggers, Familiarization with malwares: creating test malwares and detecting them, Using steganographic tools for hiding data, Launching SQL injection attacks and prevention, Studying XSS and XSRF attacks, Studying phishing attacks, Implementing buffer over flows and analyzing the vulnerabilities, Familiarization with major oper source cyber security tools, Investigating on latest trends in the cyber attacks.
2	Familiarize with Android application .apk files. By performing static and dynamic analysis on the app find the vulnerable application and document the inferences perform mobile device forensics, Investigate crimes in Darknet, crimes involving crypto currencies, crimes in socia media and crimes in online financial transactions Perform social media forensics, Perform email forensics
3	File carving for digital forensics, Familiarization of various tools used in disk forensics OS Forensics, Perform Registry Analysis, Timestamp Analysis, Event Viewer Analysis. Familiarization of various tools used in Memory Forensics, Perform Volatile Data Collection, Memory Dump Familiarize with volatility Framework and Plugins, Bulk Extractor and YARA tools.
4	Familiarization of various tools used Network forensics, Familiarization of various tools used for Image, audio and video forensics, Familiarization of various ant forensics tools.
	B ooks: ichael Gregg, Build Your Own Security Lab: A Field Guide for Networ

Testing, 1st Edition, Wiley 2008.

- 2. Michael Gregg, The Network Security Test Lab: A Step-by-Step Guide, 1st Edition, Wiley 2015.
- 3. Bill Nelson, Amelia Phillips, Christopher Steuart,"Guide to Computer Forensics and Investigations", Sixth Edition (2020)
- 4. Karanam Satyanarayana, "Step by Step in Cyber Crimes Investigation, Challenges and Solutions", Asia Law House; 1st Edition (2020).

5.

Nina Godbole , Sunit Belapure, Cyber Security: Understanding Cyber Crimes, Computer F orensics and Legal Perspectives, 2011,

6.

John Sammons, The Basics of Digital Forensics: The Primer for Getting Started in Digital F orensics Elsevier, 2014.

7.

P.W. Singer, Allan Friedman, Cyber security and Cyber war: What Everyone Needs to Kn ow, Oxford University Press, 2014,

- Angus M. Marshall, "Digital Forensics: Digital Evidence in Criminal Investigation", John Wiley and Sons, 2008.
- 9. Dr. Rukmani Krishnamurthy, "Introduction to Forensic Science in Criminal Investigation", Selective & Scientific Books (2015)

10. Niranjan Reddy, "Practical Cyber Forensics: An Incident-Based Approach to Forensic Investigations", New York, Apress, 1st Edition (2019)

References:

- 1. Thomas J. Holt (Author), Adam M. Bossler (Author), Kathryn C. Seigfried Spellar, "Cybercrime and Digital Forensics: An Introduction", Routledge, 2nd Edition (2017)
- 2. Computer Forensics: Investigating Network Intrusions and Cyber Crime (EC Council Press Series: Computer Forensics)
- 3. Cyber Forensics: Understanding Information Security Investigations (Springer's Forensic Laboratory Science Series) by Jennifer Bayuk

Course Code	Course Name	Credit Split	Year of				
		Lecture/Lab/Seminar/Project	Introduction				
M302306	Ethical Hacking	0-1-0-0	2021				
	and Penetration Testing Lab						
Prerequisites: Nil							

M3022306 ETHICAL HACKING AND PENETRATION TESTING LAB

Course Objectives:

- 1. To help the students to apply tools and techniques to explore vulnerabilities in systems.
- 2. To enable the students to perform ethical hacking and penetration of systems and networks

Course Outcomes: After completion of this course, the students would be able to:

CO1: Apply tools and techniques to evaluate whether computer systems, and networks are vulnerable to cyber attacks.

CO2: Understand the need for protecting network and computer systems from cyber attacks.

CO3: Analyze the vulnerabilities present in the networks and computer systems using various tools and techniques.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
CO1	3	3	2		3	2	
CO2	3	3	2		3		
CO3	3	3	2		3		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:	
, Module	
1	1. Foot printing Lab - 1 (OSINT)
	2. Foot printing Lab - 2 (Recon-NG)
	3. Scanning Lab -1 (Nmap)
	4. Scanning Lab - 2 (Nmap Scanning Scripts Online Scanning Tool
	Enumeration Lab
2	1. Vulnerability Scanning (OpenVAS Nessus)
	2. System Hacking (Metasploit)
	3. Malware Threats
	4. Sniffing Lab (Wireshark Ettercap Cain & Abel)
	5. Social Engineering (Phishing attacks Open Source Campaig
	Frameworks)
3	1. DoS Tools Session Hijacking
	2. Web App Scanners (Accunetix ZAP Proxy)
	3. Web Interceptor (Burp Suite)
	4. Web attacks (OWASP Top 10)
4	1. Wi-Fi Hacking
	2. Hacking Mobile Platforms using MSF
	3. Implementation Of IDS-IPS -SNORT Active Directory Web Proxy
	SQUID Firewall _ PF Sense
	4. Implementation of OpenSSL and exploiting Heartbleed Cryptograph

vul	nera	abi	lity
			- /

Text Books:

- 1. Phillip L. Wylie , The PentesterBluePrint, Wiley Publication, 2021.
- 2. James Corley, Kent Backman , Michael Simpson , Hands on Ethical Hacking and Network Defense, DelmarCengage Learning.
- 3. Patrick Engebretso, The Basics of Hacking and Penetration Testing, Second Edition, Syngress Publication.
- 4. Sean-Philip Oriyano,CEH Certified Ethical Hacker Version 8 Self-study Guide, Wiley / Sybex, 2014

References:

- 1. Peter Kim, The Hacker Playbook 2: Practical Guide to Penetration Testing, Createspace Independent Pub, 2015
- 2. https://www.ethicalhackx.com/ceh-v10-download/
- 3. http://egyanagar.osou.ac.in/slmfiles/CSP-016-WHITE-HAT_HACKING-LABORATORY-MANUAL-1516011133.pdf
- 4. https://repo.zenk-security.com/Magazine%20E-book/EN-Certified%20Ethical%20Hacker%203.0%20Official%20Course.pdf
- 5. http://www.e-fense.com/helix3pro.php
- 6. https://santoku-linux.com/download/

M3020307 IoT EXPERIENCE LAB

Course Code	Course Name	Credit Split	Year of
		Lecture/Lab/Seminar/Project	Introduction
M302307	IoT Experience	0-1-0-0	2021
	Lab		

Prerequisites: Students should have already taken or are currently taking the following courses : 1. Embedded Systems Course 2. Digital Experience Lab

Course Objectives:

- 1. To train students to use various embedded platforms for designing IoT applications .
- 2. To train students to develop basic programming skills required for designing IoT applications .
- 3. To train students to leverage the skills acquired to solve real world problems using IoT technology.

Course Outcomes: After completion of this course, the students would be able to:

CO1: Utilize the Microcontroller and SBC platforms for building components of IoT systems.

CO2: Write programs using various platforms for building IoT applications, data acquisition and acquire knowledge on basic protocols for data exchange.

CO3: Learn to use lightweight messaging protocols for implementing IoT applications.

CO4: Learn interfacing radio and other communication modules for building IoT applications.

CO5: Use of web servers, data handling and Cloud interface for storage and analytics.

Program Learning Outcomes:

PLO 1: Develop strong fundamental disciplinary knowledge

Mapping of course outcomes with program learning outcomes:

PLO 2 : Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 : Apply scholarship to conduct independent and innovative research

PLO 4 : Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 : Practice ethical standards of professional conduct and research;

PLO6:Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
CO1	3	2	1	1	2	3	
CO2	2	3	1	2	2	2	
CO3	2	2	3	2	2	2	
CO4	3	3	2	1	1	2	
CO5	2	2	1	2	1	3	

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content					
1	IoT HW and SW components					
	1. Building blocks of IoT systems , Sensors, Basic Nodes , IIoT (Review and exposure					
	to basic building blocks)					
	2. Introduction to IDEs for building IoT Applications (8, 32 Bit microcontrollers)					
	3. Programming and deploying applications on Low power boards. (JTAG, ICSP etc)					
	4. Optimizing applications for battery powered applications, Efficient BMS					
2	Data Acquisition, Storage and Communication					
	5. Data Acquisition : Signal conditioning and sensor interface experiments (Review					
	of Sensor interfaces : Light, Motion, Temp, Humidity etc)					
	6. Digital and Analog sensor Interface exercises (Experiments using SPI,					
	I2C, OneWire Protocols)					
	7. Local storage options for memory constrained edge applications. (Memory					
	Interface exercises)					
	8. Short range M2M Communication Experiments - Radio interface experiments					
	using Low power transceivers (Applications with NRF , BLE , Zigbee networks)					
	Advanced IoT Platforms, SBCs					
3	9. Exposure to Advanced IoT Platforms (Experiments using SBC, Sensing, Analyzing,					

	Controlling, Communication / ARM EMBED)
	10. Gateway Configurations & Implementations (eg using SBCs : Rpi , Beagle , Custom
	Boards)
	11. Data Management and IoT security - implementation and experiments
	Stacks, Cloud Platforms & Use Cases
4	12. IoT stacks and protocols. (Lightweight protocols eg : MQTT implementation
	experiments)
	13. Web server applications for IoT and Cloud platforms for IoT Applications (eg :
	AWS, Watson, Thingspeak)
	14. LPWAN (NB-IoT, SigFox, LoRA : Real time implementation and application
	experiments on various verticals of IoT - Industrial IoT , Smart Cities, Smart Homes)
	15. Address real world problems using the acquired skills- mini projects.

Text Books :

- 1. Gary Smart," Practical Python Programming for IoT ", Packt Publishing.
- 2. Perry Lea, "IoT and Edge Computing for Architects, 2nd Edition", Packt Publishing.
- Simon Monk, "Raspberry Pi Cookbook: Software and Hardware Problems and Solutions ", 3rd Edition, O'Reilly
- 4. Rolando Herrero, "Fundamentals of IoT Communication Technologies", Springer.

References:

- Brian Russell & Drew Van Duren, "Practical Internet of Things Security: Beat IoT security threats by strengthening your security strategy and posture against IoT vulnerabilities", Packt Publishing.
- 2. Reema Thareja, "Python Programming using Problem Solving Approach", Oxford Higher Education.
- 3. Kurose & Ross, "Computer Networking: A Top-Down Approach", 7th Edition, Pearson.

		Year of			
	Lecture/Lab/Seminar/Project	Introduction			
ine Learning Lab 1	0-1-0-0	2021			
Prerequisites: Nil					
	ine Learning Lab 1				

M3021116 MACHINE LEARNING LAB - 1

Course Objectives:

- 1. To provide students with a good understanding of the implementation of major algorithms in Machine Learning
- 2. To help the students develop the ability to solve problems using the learned concepts.
- 3. To connect the concepts to other domains and apply in related problems

Course Outcomes: After completion of this course, the students would be able to:

CO1: Understand the foundations of modern deep learning and reinforcement learning theory, problem and state of the art solutions.

CO2: Analyze and evaluate critically the building and integration of deep learning and reinforcement learning algorithms and systems.

CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Syllabus:

Module	Content
1	Exploration of Google AI Experiments platform, Familiarization with NumPy, SciPy matplotlib and scikit-learn.
2	Implementation of Perceptron. Implementation of Principal Component Analysis Experiments with Nave Bayes Classifier, Implementation of Logistic Regression
3	Implementation of Maximum Likelihood Estimation, Experiments with K-Means Algorithm, Experiments with Hidden Markov Model
4	Experiments with Support Vector Machine Libraries : SVM, SVC and SVR

Text Books:

1. Understanding Machine Learning: From Theory to Algorithms, Shai ShalevShwartz, Shai Ben-David, Cambridge University Press, 2014.

Course Code Course Name		Credit Split	Year of				
		Lecture/Lab/Seminar/Project	Introduction				
M302206	Machine Learning Lab 2	0-1-0-0	2021				
Prerequisites:	Prerequisites: Nil						

M3021206 MACHINE LEARNING LAB - 2

Course Objectives:

- 1. To provide students with a good understanding of the implementation of major algorithms in Deep Learning and Reinforcement Learning
- 2. To help the students develop the ability to solve problems using the learned concepts.
- 3. To connect the concepts to other domains and apply in related problems

Course Outcomes: After completion of this course, the students would be able to:

CO1: Understand the foundations of modern deep learning and reinforcement learning theory, problem and state of the art solutions.

CO2: Analyze and evaluate critically the building and integration of deep learning and reinforcement learning algorithms and systems.

CO3: Design and demonstrate a working deep learning and reinforcement learning system through team research project, and project report, presentation.

Program Learning Outcomes:

PLO 1 Develop strong fundamental disciplinary knowledge

PLO 2 Demonstrate research skills that are of experimental, computational, or theoretical nature

PLO 3 Apply scholarship to conduct independent and innovative research

PLO 4 Show communication skills in a variety of formats (oral, written) and to expert and non-expert audiences;

PLO 5 Practice ethical standards of professional conduct and research;

PLO 6 Acquire professional skills such as collaborative skills, ability to write grants, entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in the department.

Mapping of course outcomes with program learning outcomes:

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6
CO1	3	2	3	2		
CO2	3	3	3	2		
CO3	2	3	3	2		

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))

Module	Content
1	Familiarisation with Deep Learning Frameworks : Keras and Tensorflow (Introduction to Caffe and Torch is optional)
	Exploration of any three popular data sets used in Deep Learning/Reinforcement Learning Research
2	Experiments with Recurrent Neural Networks for sequence modelling problems - sequence prediction, sequence labelling, Experiments with any pre-trained transformer model Experiments with Convolutional Neural Networks - Image classification and object detection
3	Demonstration of the application of an MDP. Implementation of Q-Learning, Experiments with DQN

4	Experiments with DDPG, Implementation of any solution to Bandit Problem discussed in recent research literature.
Text B	Books: Mastering Machine Learning Algorithms, Giuseppe Bonaccorso, Ingram short title,
	2018

M1020107 PYTHON PROGRAMMING LAB

Course Code M102107		Course Name		Credit Split Lecture/Lab/Seminar/Project			Year of Introduction	
		Python Progr	amming Lab	0-1-0-0			2021	
	-	hould have alr	eady taken or	is currently	taking the 'Pr	oblem So	olving with	
	on' course							
Cours	e Objectiv	es:						
1.	To train students to write algorithms and flowcharts to solve computational problems.							
2.	To train students to develop basic programming skills.							
3.	To train students to solve simple computational problems using the Python							
	program	ming language						
4.	To train s	students to use	e object-orient	ted concept	s and data hai	ndling.		
Cours	e Outcome	es: After compl	letion of this c	ourse, the	students woul	d be able	to:	
	CO1: Ana	alyze computat	ional problem	ns and solve	them system	aticallv.		
			-		•			
	CO2: Write algorithms and flowcharts to solve computational problems. CO3: Solve computational problems by writing their own computer programs.							
	CO4: Use	the Python pr	ogramming la	nguage for	solving compu	utational	problems.	
	CO5: Use	the data hand	lling features	of the Pytho	on for data and	alysis.		
Progr	am Learnir	ng Outcomes:	-					
	PLO 1 De	velop strong fu	undamental di	isciplinarv k	nowledge			
	PLO 1 Develop strong fundamental disciplinary knowledgePLO 2 Demonstrate research skills that are of experimental, computational, computational					omputational, or		
		al nature				,	, , , , , , , , , , , , , , , , , , .	
	PLO 3 Apply scholarship to conduct independent and innovative research					ch		
	PLO 4 Show communication skills in a variety of formats (oral, written) and to expe							
	and non-expert audiences;							
	PLO 5 Practice ethical standards of professional conduct and research;							
	PLO 6 Acquire professional skills such as collaborative skills, ability to write grants,							
	entrepreneurial skills, and write articles for scholarly journals if it is taught by faculty in							
	the department.							
Марр	oing of cou	rse outcomes v	with program	learning ou	itcomes:			
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO	6	
CO1	3	1						

CO2 3

CO3 3

CO4 3

CO5 3

(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)) Syllabus: List of exercises/Lab programs:

Module	Content
1	1. Problems on number systems and data encoding.
	2. Writing simple algorithms and flowcharts.
	3. Writing advanced algorithms and flowcharts, installing and running Python. 4.
	Writing simple programs (e.g. Drake equation) to familiarize with variables,
	keywords, operators, expressions, data types and operator precedence. The print()
	function, type conversion, formatting numbers and strings.
2	5. Conditional statements, writing simple scripts, using comments for program
	readability.
	6. Loops, nested loops, break and continue statements (e.g. Prime number,
	Fibonacci series, Factorial, Armstrong number, Palindrome)
	7. Built-in data structures and their applications - Lists, Tuples, Sets and Dictionaries,
	Range function, Functions such as zip() and enumerate().
	8. More coding exercises using lists (e.g. Merging sorted lists), tuples, sets,
	dictionaries.
3	9. Defining and calling functions: Passing arguments and returning values (e.g
	Pascal's triangle.), scope, local functions, Lambda functions, function redefinition
	standard library modules.
	10. File and exception handling.
	11. Coding exercises to practice Object Oriented Programming.
4	12. Data Handling using NumPy and Pandas.
	13. Python and SQL
	14. Data Visualization in Python

Text Books:

- 1. Charles Dierbach, "Introduction to Computer Science Using Python: A Computational Problem-Solving Focus", Wiley.
- 2. Ashok NamdevKamthane, Amit Ashok Kamthane, "Programming and Problem Solving with Python", McGraw Hill Education.
- 3. Steven F. Lott, "Object Oriented Python", Packt Publishing.
- 4. Fabio Nelli, Python Data Analytics: With Pandas, NumPy, and Matplotlib 2nd Edition, Kindle Edition

References:

- 1. Reema Thareja, "Python Programming using Problem Solving Approach", Oxford Higher Education.
- 2. Bradley N. Miller, David L. Ranum Problem Solving with Algorithms and Data Structures Using Python, Franklin, Beedle& Associates.
- 3. Steven F. Lott, "Object Oriented Python", Packt Publishing.

M2022206 SECURITY AUDITING LAB

Course Code		Course	Name		redit Split		Year of	
				Lecture/La	b/Seminar/Proje	ect Introdu	uction	
M202206		Security Au	diting Lab		0-1-0-0	202	21	
Prere	rerequisites: Nil							
Cours	e Objective	25:						
1.	To help t	he students to	apply tools a	nd techniau	es to detect sec	uritv vulneral	bilities in	
	 To help the students to apply tools and techniques to detect security vulnerabilities in systems, software and networks. 							
2.	2. To enable the students to perform security audits of the systems, network							
		ture and softw		-		•		
Cours	e Outcome	s: After compl	etion of this c	ourse, the st	udents would be	e able to:		
	CO1: App	ly tools an	d technique	s to evalu	late whether co	omputer syst	ems, and	
	networks	are vulnerable	e to cyber atta	cks.				
			need for pr	rotecting ne	twork and cor	nputer syster	ns from	
	cyber atta							
			management	and securit	y auditing of so	oftware, syst	ems and	
D	networks							
FIUSI		g Outcomes:						
	PIO1De	velop strong fu	indamental di	scinlinary kn	owledge			
					of experimenta	I. computati	ional. or	
	theoretic					,	,	
	PLO 3 Ap	ply scholarship	to conduct in	dependent a	nd innovative re	search		
	PLO 4 Sh	ow communica	ation skills in	a variety of	formats (oral, w	vritten) and t	to expert	
	and non-	expert audienc	es;					
					nduct and resea			
	PLO 6 Acquire professional skills such as collaborative skills, ability to write grants							
			nd write artic	les for schola	arly journals if it	is taught by	faculty in	
	the depa							
Марр	ing of cour	se outcomes v	vith program	learning out	comes:			
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6]	
CO1	3	3	2		3	2		
CO2	3	3	2		3			
CO3	3	3	2		3			
	(Correlation: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High))							
		5 (,	•	-			
Syllab	Syllabus:							
Module Content								
		-						

1	Familiarize with tools such as Burp Suite, Kali / Parrot						
	OS, SQLMap, WPScan (for Wordpress Vulnerability						
	Scanner), Nmap, Metasploit, Wireshark, Android Debug Bridge, Drozer, and MobSF,						
	etc.						
	Perform penetration testing with the following tools						
	1. Wireshark						
	2. John the Ripper Tool						
	3. Hydra						
	4. Burp Suite						
2	Perform network security auditing with the following tools						
	1. Nessus						
	2. Nmap						
	3. OpenVAS						
	4. Metasploit						
3	Perform web application security testing using						
	1. Wapiti						
	2. W3af						
	3. Nogotofail						
	4. Netsparker						
	5. SonarQube						
4	Perform forensics with the following tools						
	1. Sleuth Kit						
	2. Autopsy						
	3. FTK Imager						
	4. Linux 'dd'						
	Perform incident management audit with the following tools						
	1. ProcDump						
	2. Cyphon						
	3. TheHive Project						
	4. Volatility						

Text Books:

- 1. IT Auditing: Using Controls to Protect Information Assets, Third Edition Book by Chris Davis and Mike Schiller
- 2. https://www.elsevier.com/books/the-basics-of-it-audit/gantz/978-0-12-417159-6

References:

- 1. https://www.wireshark.org/docs/wsug_html_chunked/
- 2. https://www.openvas.org/
- 3. https://nmap.org/
- 4. https://www.metasploit.com/
- 5. https://www.geeksforgeeks.org/what-is-burp-suite/
- 6. https://www.tenable.com/products/nessus
- 7. https://wapiti.sourceforge.io/
- 8. https://github.com/AndroBugs/